Embedding Smooth Dendroids in Hyperspaces

1979 ◽  
Vol 31 (1) ◽  
pp. 130-138 ◽  
Author(s):  
J. Grispolakis ◽  
E. D. Tymchatyn

A continuum will be a connected, compact, metric space. By a mapping we mean a continuous function. By a partially ordered space X we mean a continuum X together with a partial order which is closed when regarded as a subset of X × X. We let 2x (resp. C(X)) denote the hyperspace of closed subsets (resp. subcontinua) of X with the Vietoris topology which coincides with the topology induced by the Hausdorff metric. The hyperspaces 2X and C(X) are arcwise connected metric continua (see [3, Theorem 2.7]). If A ⊂ X we let C(A) denote the subspace of subcontinua of X which lie in A.If X is a partially ordered space we define two functions L, M : X → 2X by setting for each x ∊ X

1975 ◽  
Vol 18 (3) ◽  
pp. 411-416
Author(s):  
E. D. Tymchatyn

A partially ordered space is an ordered pair (X, ≤) where X is a compact metric space and ≤ is a partial ordering on X such that ≤ is a closed subset of the Cartesian product X×X. ≤ is said to be a closed partial order on X.


1988 ◽  
Vol 40 (1) ◽  
pp. 217-227 ◽  
Author(s):  
Hisao Kato

By a compactum, we mean a compact metric space. A continuum is a connected compactum. A curve is a 1-dimensional continuum. Let X be a continuum and let C(X) be the hyperspace of (nonempty) subcontinua of X, C(X) is metrized with the Hausdorff metric (e.g., see [12] or [18]). One of the most convenient tools in order to study the structure of C(X) is a monotone map ω:C(X) → [0, ω(X)] defined by H. Whitney [25]. A map ω:C(X) → [0, ω(X)] is said to be a Whitney map for C(X) provided thatThe continua {ω−1} (0 < t < ω(X)) are called the Whitney continua of X. We may think of the map ω as measuring the size of a continuum. Note that ω−1(0) is homeomorphic to X and ω−1(ω(X)) = {X}. Naturally, we are interested in the structures of ω−1(t)(0 < t < ω(X)). In [14], J. Krasinkiewicz proved that if X is a circle-like continuum and ω is any Whitney map for C(X), then for any 0 < t < ω(X)ω−1(t) is shape equivalent to X, i.e., Sh ω−1(t) = Sh X (e.g., see [1] or [17]). In [8], we proved the following: If one of the conditions (i) and (ii) is satisfied, then the shape morphismwhich is defined in [7] and [8], is a shape equivalence.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Beata Derȩgowska ◽  
Beata Gryszka ◽  
Karol Gryszka ◽  
Paweł Wójcik

AbstractThe investigations of the smooth points in the spaces of continuous function were started by Banach in 1932 considering function space $$\mathcal {C}(\Omega )$$ C ( Ω ) . Singer and Sundaresan extended the result of Banach to the space of vector valued continuous functions $$\mathcal {C}(\mathcal {T},E)$$ C ( T , E ) , where $$\mathcal {T}$$ T is a compact metric space. The aim of this paper is to present a description of semi-smooth points in spaces of continuous functions $$\mathcal {C}_0(\mathcal {T},E)$$ C 0 ( T , E ) (instead of smooth points). Moreover, we also find necessary and sufficient condition for semi-smoothness in the general case.


1980 ◽  
Vol 32 (4) ◽  
pp. 867-879
Author(s):  
Ronnie Levy

If X is a dense subspace of Y, much is known about the question of when every bounded continuous real-valued function on X extends to a continuous function on Y. Indeed, this is one of the central topics of [5]. In this paper we are interested in the opposite question: When are there continuous bounded real-valued functions on X which extend to no point of Y – X? (Of course, we cannot hope that every function on X fails to extend since the restrictions to X of continuous functions on Y extend to Y.) In this paper, we show that if Y is a compact metric space and if X is a dense subset of Y, then X admits a bounded continuous function which extends to no point of Y – X if and only if X is completely metrizable. We also show that for certain spaces Y and dense subsets X, the set of bounded functions on X which extend to a point of Y – X form a first category subset of C*(X).


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Heng Liu ◽  
Fengchun Lei ◽  
Lidong Wang

Consider the surjective, continuous mapf:X→Xand the continuous mapf¯of𝒦(X)induced byf, whereXis a compact metric space and𝒦(X)is the space of all nonempty compact subsets ofXendowed with the Hausdorff metric. In this paper, we give a short proof that iff¯is Li-Yoke sensitive, thenfis Li-Yorke sensitive. Furthermore, we give an example showing that Li-Yorke sensitivity offdoes not imply Li-Yorke sensitivity off¯.


2004 ◽  
Vol 04 (03) ◽  
pp. 373-384 ◽  
Author(s):  
DESHENG LI ◽  
P. E. KLOEDEN

The equi-attraction properties of uniform pullback attractors [Formula: see text] of nonautonomous dynamical systems (θ,ϕλ) with a parameter λ∈Λ, where Λ is a compact metric space, are investigated; here θ is an autonomous dynamical system on a compact metric space P which drives the cocycle ϕλon a complete metric state space X. In particular, under appropriate regularity conditions, it is shown that the equi-attraction of the family [Formula: see text] uniformly in p∈P is equivalent to the continuity of the setvalued mappings [Formula: see text] in λ with respect to the Hausdorff metric on the nonempty compact subsets of X.


2018 ◽  
Vol 20 (07) ◽  
pp. 1750086 ◽  
Author(s):  
Keonhee Lee ◽  
C. A. Morales ◽  
Bomi Shin

We prove that the set of expansive measures of a homeomorphism of a compact metric space is a [Formula: see text] subset of the space of Borel probability measures equipped with the weak* topology. Next that every expansive measure of a homeomorphism of a compact metric space can be weak* approximated by expansive measures with invariant support. In addition, if the expansive measures of a homeomorphism of a compact metric space are dense in the space of Borel probability measures, then there is an expansive measure whose support is both invariant and close to the whole space with respect to the Hausdorff metric. Henceforth, if the expansive measures are dense in the space of Borel probability measures, the set of heteroclinic points has no interior and the space has no isolated points.


2017 ◽  
Vol 27 (08) ◽  
pp. 1750119 ◽  
Author(s):  
Lidong Wang ◽  
Yingcui Zhao ◽  
Yuelin Gao ◽  
Heng Liu

Let [Formula: see text] be a compact metric space and [Formula: see text] be an [Formula: see text]-tuple of continuous selfmaps on [Formula: see text]. This paper investigates Hausdorff metric Li–Yorke chaos, distributional chaos and distributional chaos in a sequence from a set-valued view. On the basis of this research, we draw the main conclusions as follows: (i) If [Formula: see text] has a distributionally chaotic pair, especially [Formula: see text] is distributionally chaotic, the strongly nonwandering set [Formula: see text] contains at least two points. (ii) We give a sufficient condition for [Formula: see text] to be distributionally chaotic in a sequence and chaotic in the strong sense of Li–Yorke. Finally, an example to verify (ii) is given.


1999 ◽  
Vol 19 (4) ◽  
pp. 1063-1076 ◽  
Author(s):  
ELON LINDENSTRAUSS

In this paper we prove that any ergodic measurably distal system can be realized as a minimal topologically distal system with an invariant Borel measure of full support. The proof depends upon a theorem stating that every measurable function from a measurable system with its base space being a compact metric space to a connected compact group is cohomologous to a continuous function.


1997 ◽  
Vol 7 (5) ◽  
pp. 401-417 ◽  
Author(s):  
ABBAS EDALAT

We construct an approximating chain of simple valuations on the upper space of a compact metric space whose lub is a given probability measure on the metric space. We show that whenever a separable metric space is homeomorphic to a Gδ subset of an ω-continuous dcpo equipped with its Scott topology, the space of probability measures of the metric space equipped with the weak topology is homeomorphic with a subset of the maximal elements of the probabilistic power domain of the ω-continuous dcpo. Given an effective approximation of a probability measure by an increasing chain of normalised valuations on the upper space of a compact metric space, we show that the expected value of any Hölder continuous function on the space can be obtained up to any given accuracy. We present a novel application in computing integrals in dynamical systems. We obtain an algorithm to compute the expected value of any Hölder continuous function with respect to the unique invariant measure of the Feigenbaum map in the periodic doubling route to chaos.


Sign in / Sign up

Export Citation Format

Share Document