(KK)-Properties, Normal Structure and Fixed Points of Nonexpansive Mappings in Orlicz Sequence Spaces

1986 ◽  
Vol 38 (3) ◽  
pp. 728-750 ◽  
Author(s):  
D. van Dulst ◽  
V. de Valk

In this paper we investigate Orlicz sequence spaces with regard to certain geometric properties that have proved to be important in fixed point theory. In particular, we shall consider various Kadec-Klee type properties, and weak and weak* normal structure. It turns out that many of these properties, though generally distinct, coincide in Orlicz sequence spaces and that all of them are intimately related to the so-called Δ2-condition. Some of our results extend to vector-valued Orlicz sequence spaces. For example, we prove a rather powerful theorem on the preservation of weak normal structure under the formation of substitution spaces. There is also a fixed point theorem: the Orlicz sequence space hM has the fixed point property if the complementary Orlicz function M* satisfies theΔ2-condition. Another one of our results implies that, under this assumption on M*, hM has weak normal structure if and only if M also satisfies the Δ2-condition.

Author(s):  
Bozena Piatek

AbstractIn [T. Dominguez Benavides and E. Llorens-Fuster, Iterated nonexpansive mappings, J. Fixed Point Theory Appl. 20 (2018), no. 3, Paper No. 104, 18 pp.], the authors raised the question about the existence of a fixed point free continuous INEA mapping T defined on a closed convex and bounded subset (or on a weakly compact convex subset) of a Banach space with normal structure. Our main goal is to give the affirmative answer to this problem in the very special case of a Hilbert space.


Author(s):  
Kazimierz Goebel ◽  
Stanisław Prus

The subject of the chapter is the relationship between the (Chebyshev) radius and diameter of convex bounded sets. The main tool is the Jung coefficient. Diametral sets and normal structure in connection with the fixed point theory for nonexpansive mappings are presented.


2003 ◽  
Vol 2003 (5) ◽  
pp. 311-324 ◽  
Author(s):  
W. A. Kirk

This is a brief survey of the use of transfinite induction in metric fixed-point theory. Among the results discussed in some detail is the author's 1989 result on directionally nonexpansive mappings (which is somewhat sharpened), a result of Kulesza and Lim giving conditions when countable compactness implies compactness, a recent inwardness result for contractions due to Lim, and a recent extension of Caristi's theorem due to Saliga and the author. In each instance, transfinite methods seem necessary.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
O. Zentar ◽  
M. Ziane ◽  
S. Khelifa

Abstract The purpose of this work is to investigate the existence of solutions for a system of random differential equations involving the Riemann–Liouville fractional derivative. The existence result is established by means of a random abstract formulation to Sadovskii’s fixed point theorem principle [A. Baliki, J. J. Nieto, A. Ouahab and M. L. Sinacer, Random semilinear system of differential equations with impulses, Fixed Point Theory Appl. 2017 2017, Paper No. 27] combined with a technique based on vector-valued metrics and convergent to zero matrices. An example is also provided to illustrate our result.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 578
Author(s):  
Afrah A. N. Abdou ◽  
Mohamed Amine Khamsi

Kannan maps have inspired a branch of metric fixed point theory devoted to the extension of the classical Banach contraction principle. The study of these maps in modular vector spaces was attempted timidly and was not successful. In this work, we look at this problem in the variable exponent sequence spaces lp(·). We prove the modular version of most of the known facts about these maps in metric and Banach spaces. In particular, our results for Kannan nonexpansive maps in the modular sense were never attempted before.


2013 ◽  
Vol 31 (2) ◽  
pp. 55 ◽  
Author(s):  
Cigdem Asma Bektas ◽  
Gülcan Atıci

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to define the sequence space ℓM which is called an Orlicz sequence space. Another generalization of Orlicz sequence spaces is due to Woo [9]. An important subspace of ℓ (M), which is an AK-space, is the space h (M) . We define the sequence spaces ℓM (m) and ℓ N(m), where M = (Mk) and N = (Nk) are sequences of Orlicz functions such that Mk and Nk be mutually  complementary for each k. We also examine some topological properties of these spaces. We give the α−, β− and γ− duals of the sequence space h (M) and α− duals of the squence spaces ℓ (M, λ) and ℓ (N, λ).


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Godwin Amechi Okeke ◽  
Sheila Amina Bishop ◽  
Safeer Hussain Khan

Recently, Khan and Abbas initiated the study of approximating fixed points of multivalued nonlinear mappings in modular function spaces. It is our purpose in this study to continue this recent trend in the study of fixed point theory of multivalued nonlinear mappings in modular function spaces. We prove some interesting theorems for ρ-quasi-nonexpansive mappings using the Picard-Krasnoselskii hybrid iterative process. We apply our results to solving certain initial value problem.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Enrique Llorens Fuster ◽  
Elena Moreno Gálvez

We study some aspects of the fixed point theory for a class of generalized nonexpansive mappings, which among others contain the class of generalized nonexpansive mappings recently defined by Suzuki in 2008.


Sign in / Sign up

Export Citation Format

Share Document