Geometric Characterization of Interpolating Varieties for the (FN)-Space A0p of Entire Functions

1995 ◽  
Vol 47 (1) ◽  
pp. 28-43 ◽  
Author(s):  
Carlos A. Berenstein ◽  
Bao Qin Li ◽  
Alekos Vidras

AbstractA necessary and sufficient geometric characterization and a necessary and sufficient analytic characterization of interpolating varieties for the space of entire functions will be obtained in the paper, which as an application will also give a generalization of the well-known Pólya-Levinson density theorem.

1993 ◽  
Vol 113 (1) ◽  
pp. 205-224 ◽  
Author(s):  
Eduardo Martínez ◽  
José F. Cariñena ◽  
Willy Sarlet

AbstractWe establish necessary and sufficient conditions for the separability of a system of second-order differential equations into independent one-dimensional second-order equations. The characterization of this property is given in terms of geometrical objects which are directly related to the system and relatively easy to compute. The proof of the main theorem is constructive and thus yields a practical procedure for constructing coordinates in which the system decouples.


2017 ◽  
Vol 67 (3) ◽  
Author(s):  
Richard F. Patterson ◽  
Fatih Nuray

AbstractThe following notion of bounded index for complex entire functions was presented by Lepson. functionThe main goal of this paper is extend this notion to holomorphic bivariate function. To that end, we obtain the following definition. A holomorphic bivariate function is of bounded index, if there exist two integersUsing this notion we present necessary and sufficient conditions that ensure that a holomorphic bivariate function is of bounded index.


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 859-869 ◽  
Author(s):  
Patrick J Ferris ◽  
Ursula W Goodenough

Diploid cells of Chlamydomonas reinhardtii that are heterozygous at the mating-type locus (mt  +/mt  –) differentiate as minus gametes, a phenomenon known as minus dominance. We report the cloning and characterization of a gene that is necessary and sufficient to exert this minus dominance over the plus differentiation program. The gene, called mid, is located in the rearranged (R) domain of the mt  – locus, and has duplicated and transposed to an autosome in a laboratory strain. The imp11 mt  – mutant, which differentiates as a fusion-incompetent plus gamete, carries a point mutation in mid. Like the fus1 gene in the mt  + locus, mid displays low codon bias compared with other nuclear genes. The mid sequence carries a putative leucine zipper motif, suggesting that it functions as a transcription factor to switch on the minus program and switch off the plus program of gametic differentiation. This is the first sex-determination gene to be characterized in a green organism.


2020 ◽  
Vol 15 (1) ◽  
pp. 258-265
Author(s):  
Yu Zhou ◽  
Daoguang Mu ◽  
Xinfeng Dong

AbstractS-box is the basic component of symmetric cryptographic algorithms, and its cryptographic properties play a key role in security of the algorithms. In this paper we give the distributions of Walsh spectrum and the distributions of autocorrelation functions for (n + 1)-bit S-boxes in [12]. We obtain the nonlinearity of (n + 1)-bit S-boxes, and one necessary and sufficient conditions of (n + 1)-bit S-boxes satisfying m-order resilient. Meanwhile, we also give one characterization of (n + 1)-bit S-boxes satisfying t-order propagation criterion. Finally, we give one relationship of the sum-of-squares indicators between an n-bit S-box S0 and the (n + 1)-bit S-box S (which is constructed by S0).


1991 ◽  
Vol 56 (3) ◽  
pp. 278-280
Author(s):  
Gundorph K. Kristiansen
Keyword(s):  

1977 ◽  
Vol 82 (2) ◽  
pp. 297-300 ◽  
Author(s):  
A. V. Godambe

AbstractA necessary and sufficient condition for a Poisson mixture with an exponential type mixing distribution to be equivalently represented as a Poisson sum is obtained. The problem of deriving a similar condition under any mixing distribution on (0, ∞) is discussed. Finally, a characterization of the gamma distribution is obtained.


1974 ◽  
Vol 11 (1) ◽  
pp. 72-85 ◽  
Author(s):  
S. M. Samuels

Theorem: A necessary and sufficient condition for the superposition of two ordinary renewal processes to again be a renewal process is that they be Poisson processes.A complete proof of this theorem is given; also it is shown how the theorem follows from the corresponding one for the superposition of two stationary renewal processes.


Author(s):  
Jelena Grbić ◽  
George Simmons ◽  
Marina Ilyasova ◽  
Taras Panov

We link distinct concepts of geometric group theory and homotopy theory through underlying combinatorics. For a flag simplicial complex $K$ , we specify a necessary and sufficient combinatorial condition for the commutator subgroup $RC_K'$ of a right-angled Coxeter group, viewed as the fundamental group of the real moment-angle complex $\mathcal {R}_K$ , to be a one-relator group; and for the Pontryagin algebra $H_{*}(\Omega \mathcal {Z}_K)$ of the moment-angle complex to be a one-relator algebra. We also give a homological characterization of these properties. For $RC_K'$ , it is given by a condition on the homology group $H_2(\mathcal {R}_K)$ , whereas for $H_{*}(\Omega \mathcal {Z}_K)$ it is stated in terms of the bigrading of the homology groups of $\mathcal {Z}_K$ .


2007 ◽  
Vol 7 (7) ◽  
pp. 624-638
Author(s):  
J. de Vicente

We study the separability of bipartite quantum systems in arbitrary dimensions using the Bloch representation of their density matrix. This approach enables us to find an alternative characterization of the separability problem, from which we derive a necessary condition and sufficient conditions for separability. For a certain class of states the necessary condition and a sufficient condition turn out to be equivalent, therefore yielding a necessary and sufficient condition. The proofs of the sufficient conditions are constructive, thus providing decompositions in pure product states for the states that satisfy them. We provide examples that show the ability of these conditions to detect entanglement. In particular, the necessary condition is proved to be strong enough to detect bound entangled states.


2020 ◽  
pp. 1-30
Author(s):  
Peter Crooks ◽  
Maarten van Pruijssen

Abstract This work is concerned with Bielawski’s hyperkähler slices in the cotangent bundles of homogeneous affine varieties. One can associate such a slice with the data of a complex semisimple Lie group  $G$ , a reductive subgroup $H\subseteq G$ , and a Slodowy slice $S\subseteq \mathfrak{g}:=\text{Lie}(G)$ , defining it to be the hyperkähler quotient of $T^{\ast }(G/H)\times (G\times S)$ by a maximal compact subgroup of  $G$ . This hyperkähler slice is empty in some of the most elementary cases (e.g., when $S$ is regular and $(G,H)=(\text{SL}_{n+1},\text{GL}_{n})$ , $n\geqslant 3$ ), prompting us to seek necessary and sufficient conditions for non-emptiness. We give a spherical-geometric characterization of the non-empty hyperkähler slices that arise when $S=S_{\text{reg}}$ is a regular Slodowy slice, proving that non-emptiness is equivalent to the so-called $\mathfrak{a}$ -regularity of $(G,H)$ . This $\mathfrak{a}$ -regularity condition is formulated in several equivalent ways, one being a concrete condition on the rank and complexity of $G/H$ . We also provide a classification of the $\mathfrak{a}$ -regular pairs $(G,H)$ in which $H$ is a reductive spherical subgroup. Our arguments make essential use of Knop’s results on moment map images and Losev’s algorithm for computing Cartan spaces.


Sign in / Sign up

Export Citation Format

Share Document