scholarly journals Praat-Assisted Nasalance Meter: A Low-Cost Nasalance Measurement System for Evaluation of Nasal Resonance Disorders

2021 ◽  
Vol 2 (3) ◽  
pp. 116-121
Author(s):  
Mehmet Akif Kılıç ◽  
Ozan Tüysüz ◽  
Fatih Mehmet Hanege ◽  
Ceki Paltura
2013 ◽  
Vol 30 (10) ◽  
pp. 2352-2366 ◽  
Author(s):  
Dale A. Lawrence ◽  
Ben B. Balsley

Abstract The DataHawk small airborne measurement system provides in situ atmospheric measurement capabilities for documenting scales as small as 1 m and can access reasonably large volumes in and above the atmospheric boundary layer at low cost. The design of the DataHawk system is described, beginning with the atmospheric measurement requirements, and articulating five key challenges that any practical measurement system must overcome. The resulting characteristics of the airborne and ground support components of the DataHawk system are outlined, along with its deployment, operating, and recovery modes. Typical results are presented to illustrate the types and quality of data provided by the current system, as well as the need for more of these finescale measurements. Particular focus is given to the DataHawk's ability to make very-high-resolution measurements of a variety of atmospheric variables simultaneously, with emphasis given to the measurement of two important finescale turbulence parameters, (the temperature turbulence structure constant) and ɛ (the turbulent energy dissipation rate). Future sensing possibilities and limitations using this approach are also discussed.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1297
Author(s):  
Viktor Skrickij ◽  
Eldar Šabanovič ◽  
Dachuan Shi ◽  
Stefano Ricci ◽  
Luca Rizzetto ◽  
...  

Railway infrastructure must meet safety requirements concerning its construction and operation. Track geometry monitoring is one of the most important activities in maintaining the steady technical conditions of rail infrastructure. Commonly, it is performed using complex measurement equipment installed on track-recording coaches. Existing low-cost inertial sensor-based measurement systems provide reliable measurements of track geometry in vertical directions. However, solutions are needed for track geometry parameter measurement in the lateral direction. In this research, the authors developed a visual measurement system for track gauge evaluation. It involves the detection of measurement points and the visual measurement of the distance between them. The accuracy of the visual measurement system was evaluated in the laboratory and showed promising results. The initial field test was performed in the Vilnius railway station yard, driving at low velocity on the straight track section. The results show that the image point selection method developed for selecting the wheel and rail points to measure distance is stable enough for TG measurement. Recommendations for the further improvement of the developed system are presented.


2021 ◽  
Vol 7 (2) ◽  
pp. 496-499
Author(s):  
Stadler B. Eng. Sebastian ◽  
Herbert Plischke ◽  
Christian Hanshans

Abstract Bioimpedance analysis is a label-free and easy approach to obtain information on cellular barrier integrity and cell viability more broadly. In this work, we introduce a small, low-cost, portable in vitro impedance measurement system for studies where a shadow-free exposure of the cells is a requirement. It can be controlled by a user-friendly web interface and can perform measurements automated and autonomously at short intervals. The system can be integrated into an existing IoT network for remote monitoring and indepth analyses. A single-board computer (SBC) serves as the central unit, to control, analyze, store and forward the measurement data from the single-chip impedance analyzer. Various materials and manufacturing methods were used to produce a purpose-built lid on top of a modified 24-well microtiter plate in a “do it yourself” fashion. Furthermore, three different sensor designs were developed utilizing anodic aluminum oxide (AAO) membranes and gold-plated electrodes. Preliminary tests with potassium chloride (KCl) showed first promising results.


2003 ◽  
Vol 15 (02) ◽  
pp. 61-67 ◽  
Author(s):  
MENG-HSIANG YANG ◽  
K. N. HUANG ◽  
C. F. HUANG ◽  
S. S. HUANG ◽  
M. S. YOUNG

A highly accurate Binary Amplitude-Shift-Keyed (BASK) ultrasonic tremor measurement system for use in isothermal air is developed. In this paper, we present a simple but efficient algorithm based upon phase shifts generated by three ultrasonic waves of different frequencies. By the proposed method, we can conduct larger range measurement than the phase-shift method and also get higher accuracy compared with the time-of-flight (TOF) method. Our microcomputer-based system includes two important parts. One of which is BASK modulation signal generator. The other is a phase meter designed to record and compute the phase shifts of the three different frequencies and the result motion is then sent to either an LCD for display or a PC for calibration. Experiments are done in the laboratory using BASK modulation for the frequencies of 200 Hz and 1 kHz with a 40 kHz carrier. The measurement accuracy of this measurement system in the reported experiments is within +/- 0.98 mm. The main advantages of this ultrasonic tremor measurement system are high resolution, narrow bandwidth requirement, low cost, and easy to be implemented.


2010 ◽  
Vol 428-429 ◽  
pp. 487-492
Author(s):  
Xi Yin ◽  
Xiao Jun Wang ◽  
Yong Que Xie

This thesis introduces a low cost and high precision temperature cycle measurement system with adoption of PT100 as temperature sensor, with single chip computer as the core. The method of sub-three-wire connection is proposed for engineering practice, then, can eliminate the effects of lead wire resistance and simplify the external cable connection. We discuss and research circuit component selection, circuit design, improving system reliability, and a software method of piecewise linearization process is adopted, thus we ensure exact and reliable measure and the system characteristic of low cost and high precision.


2004 ◽  
Vol 854 ◽  
Author(s):  
Shusen Huang ◽  
Xin Zhang

ABSTRACTUncooled cantilever-based microbolometer arrays received more attention recently due to high sensitivity and low cost. The central idea is built on the deflection of a bilayer SiNx/Al material upon the temperature change. The thermal-mechanical behavior of the bilayer is significant for the performance of the microbolometers. In this paper, we perform thermal cyclings to aluminum and SiNx films. The CTEs and the stress evolutions were measured using a curvature measurement system. The curvature profile of a SiNx/Al/Si component was predicted using an extension of Stoney's formula, well agreeing with the experimental results. This work demonstrates fundamental mechanics issues in bilayer SiNx/Al components, which have a great potential for the use in uncooled microbolometer applications.


2012 ◽  
Vol 241-244 ◽  
pp. 259-264 ◽  
Author(s):  
Wang Li ◽  
Gen Wang Liu ◽  
Fu He Yang

A system of miniaturized lithium battery electrochemical impedance spectroscopy (EIS) measurement is designed with high precision impedance converter chip AD5933 as its core. The measurement range of the system is from 0.010Hz to 100 KHz. Meanwhile, by using a high-level programming language of C#, an interface is developed which can real-time graphic display of EIS information. Through measurement and analysis of two types of impedance, the results show that detection precision of the system is less than 3.5%. Finally, amplitude-frequency response curves and Nyquist plots of HL-18650 M lithium battery at different state of charge (SOC) levels are measured. Compared with lithium battery EIS measurement system by traditional division, this system has the outstanding advantages of small size, high level of integration, low cost, simple operation and high precision. It is helpful to the mass production and application of lithium battery EIS measurement system.


Sign in / Sign up

Export Citation Format

Share Document