scholarly journals Bioactive compounds and antibacterial activity of endophytic fungi isolated from Black Mangrove (Avicennia africana) leaves

2019 ◽  
Vol 35 (2) ◽  
pp. 35
Author(s):  
A.E. Akinduyite ◽  
C.N. Ariole
2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Angga Puja Asiandu ◽  
Hary Widjajanti ◽  
Elisa Nurnawati

Endophytic fungi are fungi which live inside the host plant tissue and have been undergone a horizontal gene transfer process. Endophytic fungi are able to synthesize the same bioactive compounds which synthesized by their host plants. The host plant used in this research was dragon’s scales fern (Pyrrosia piloselloides (L.) M.G. Price). Dragon’s scales fern produces various of bioactive compounds which used as antibacterial agents such as polyphenols. This research was aimed to obtain endophytic fungi isolates from trophophyll fronds and sporophyll fronds of dragon’s scales fern, to determine the antibacterial activity of the secondary metabolite extracts of endophytic fungi, to determine the Minimum Inhibitory Concentration (MIC), to determine the characteristics of the endophytic fungi isolates which potentially as antibacterial source. Based on the research, 13 endophytic fungi isolates were obtained from dragon’s scales fern fronds consist of 5 isolates from trophophyll fronds and 8 isolates from sporophyll fronds. The antibacterial activity test showed that the extract of secondary metabolites of the isolate DTP2 had the highest inhibition zone diameter against E.coli 14.82 ± 4.05 mm, DTP4 against S.aureus 8.80 ± 0.03 mm and DSP4 against S.dysentriae 10.15 ± 0.36 mm. MIC of ethyl acetate extracts of secondary metabolites of isolate DTP2 against E.coli was 125 µg/mL, DTP4 against S.aureus was 125 µg/mL and DSP4 against S.dysentriae was 31.25 µg/mL. The endophytic fungi isolate DTP2 identified as Aureobasidium melanogenum, DTP4 identified as Penicillium alliisativi and DSP4 identified as Aspergillus flocculosus.


2020 ◽  
Vol 27 (11) ◽  
pp. 2883-2889
Author(s):  
Surachai Techaoei ◽  
Chariya Jirayuthcharoenkul ◽  
Khemjira Jarmkom ◽  
Thisakorn Dumrongphuttidecha ◽  
Warachate Khobjai

2021 ◽  
Vol 22 (10) ◽  
Author(s):  
Syarifah Syarifah ◽  
Elfita Elfita ◽  
HARY WIDJAJANTI ◽  
ARUM SETIAWAN ◽  
ALFIA R. KURNIAWATI

Abstract. Syarifah, Elfita, Widjajanti H, Setiawan A, Kurniawati AR. 2021. Diversity of endophytic fungi from the root bark of Syzygium zeylanicum, and the antibacterial activity of fungal extracts, and secondary metabolite. Biodiversitas 22: 4572-4582. The decoction of the root bark of Syzygium zeylanicum has been used as traditional medicine, such as for treating pathogenic bacterial infections. Endophytic fungi that live in medicinal plant tissues have a high species diversity and biological activities correlate with their host. Therefore, this study aimed to explore the diversity of endophytic fungi from the root bark of S. zeylanicum and to determine the antibacterial activity of endophytic fungi and their secondary metabolites. In this study, we isolate and identify the endophytic fungi from the root bark of S. zeylanicum, continued by screening their antibacterial activity against two Gram-negative bacteria (Escherichia coli InaCCB5 and Salmonella thypi ATCC1048 and two Gram-positive bacteria (Staphylococcus aureus InaCCB4 and Bacillus subtilis InaCCB1204) by the Kirby-Bauer method. The fungal extract with the highest antibacterial activity proceeded with the isolation and determination of the structure of their bioactive compounds. The isolates were morphologically identified. Isolates that showed strong antibacterial activity were identified by molecular identification. Isolation of bioactive compounds was carried out by chromatographic techniques and the determination of the structure of pure chemical compounds was performed by the spectroscopic analysis. In total, there were 8 isolates of endophytic fungi were obtained from the root bark of S. zeylanicum, namely SZR1 – SZR8. SZR2 isolate has the highest antibacterial activity. Molecular identification through phylogenetic analysis showed that SZR2 isolate had high similarity with Penicillium brefeldianum. Isolation of bioactive compounds from SZR2 produced compound 1 in the form of light yellow crystals which showed strong antibacterial activity against S. typhi, E. coli, and B. subtilis with MIC values of 64 g/mL. Compound 1 was identified as p-hydroxybenzaldehyde, which was also obtained in its host. In conclusion, the endophytic fungus Penicillium brefeldianum produces similar secondary metabolites and antibacterial activity as its host plant.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 624
Author(s):  
Laima Česonienė ◽  
Juozas Labokas ◽  
Ina Jasutienė ◽  
Antanas Šarkinas ◽  
Vilma Kaškonienė ◽  
...  

The aim of the study was to evaluate 11 cultivars of blue honeysuckle (Lonicera caerulea L.) for bioactive compounds, antioxidant capacity, and the antibacterial activity of berries. Total phenolic contents (TPCs) and total anthocyanin contents (TACs) were established by using ethanolic extracts. For contents of organic acids and saccharides, aqueous extracts were used, and vitamin C was determined by using oxalic acid solution. DPPH• radical scavenging capacity was evaluated by using ethanolic extracts; antibacterial activity was assessed by using both ethanolic and aqueous extracts. The TPC varied from 364.02 ± 0.41 mg/100 g in ‘Vostorg’ to 784.5 ± 0.3 mg/100 g in ‘Obilnaja’, and TAC ranged from 277.8 ± 1.1 mg/100 g in ‘Čelnočnaja’ to 394.1 ± 8.4 mg/100 g in ‘Nimfa’. Anthocyanins comprised 53.8% of total phenolic contents on average. Among organic acids, citric acid was predominant, averaging 769.41 ± 5.34 mg/100 g, with malic and quinic acids amounting to 289.90 ± 2.64 and 45.00 ± 0.37 mg/100 g on average, respectively. Contents of vitamin C were 34.26 ± 0.25 mg/100 g on average. Organic acids were most effective in the inhibition of both Gram-positive and Gram-negative bacteria tested. In conclusion, berries of L. caerulea are beneficial not only for fresh consumption, but also as a raw material or ingredients of foods with high health-promoting value.


2019 ◽  
Vol 9 (5) ◽  
pp. 204 ◽  
Author(s):  
Natthida Weerapreeyakul ◽  
Ratree Tavichakorntrakool ◽  
Aroonlug Lulitanond ◽  
Arunnee Sangka ◽  
Seksit Sungkeeree

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 379 ◽  
Author(s):  
Dhurva Prasad Gauchan ◽  
Pratistha Kandel ◽  
Astha Tuladhar ◽  
Ashesh Acharya ◽  
Upendra Kadel ◽  
...  

Background: Endophytic fungi are largely underexplored in the discovery of natural bioactive products though being rich sources of novel compounds with promising pharmaceutical potential. In this study, Taxus wallichiana, which has huge medicinal value, was investigated for its endophytic diversity and capability to produce bioactive secondary metabolites by analyzing antioxidant, antimicrobial and cytotoxic properties. Methods: The endophytes were identified by ITS-PCR using genomic DNA samples. The secondary metabolites were extracted by solvent extraction method using ethyl acetate. The antioxidant activity was analyzed by Thin Layer Chromatography, Total Phenol Content (TPC), Total Flavonoid Content (TFC) and DPPH assay, and the antimicrobial activity was analyzed by agar-well diffusion method. Brine shrimp lethality assay was used to analyze the cytotoxicity of the fungal extracts. Results: Out of 16 different Taxus trees sampled from different locations of Dhorpatan, 13 distinctive endophytic fungi were isolated and grouped into 9 different genera: Bjerkandera, Trichoderma, Preussia, Botrytis, Arthrinium, Alternaria, Cladosporium, Sporormiella and Daldinia. The ethyl acetate extracts isolated from three endophytic fungi: Alternaria alternata, Cladosporium cladosporioides and Alternaria brassicae showed significant TPC values of 204±6.144, 312.3±2.147 and 152.7±4.958µg GAE/mg of dry extract, respectively, and TFC values of 177.9±2.911, 644.1±4.202 and 96.38±3.851µg RE/mg of dry extract, respectively. Furthermore, these three extracts showed a dose dependent radical scavenging activity with IC50 concentration of 22.85, 22.15 and 23.001 µg/ml, respectively. The extracts of C. cladosporioides and A. brassicae also showed promising antimicrobial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis with a minimum inhibitory concentration of 250μg/ml for all bacteria. Both the samples showed cytotoxic property against shrimp nauplii with LC50 of 104.2 and 125.9µg/ml, respectively. Conclusions: The crude fungal extracts obtained from endophytes: A. alternata, C. cladosporioides and A. brassicae upon purification and further identification of the bioactive compounds can be a fascinating source for novel pharmaceutical agents.


2017 ◽  
Vol 11 (3) ◽  
pp. 1313-1318
Author(s):  
Herlina Rante ◽  
Risfah Yulianty ◽  
Yayu Evary ◽  
Elvira Hardiana

Sign in / Sign up

Export Citation Format

Share Document