Impedance Measurement as an Alternative to the Plate Count Method for Estimating the Total Count of Bacteria in Raw Milk

1987 ◽  
Vol 50 (8) ◽  
pp. 665-668 ◽  
Author(s):  
F. F. J. NIEUWENHOF ◽  
J. D. HOOLWERF

An improved impedance method is described with a good standard deviation of repeatability (sm = 0.05 log unit) and a fair standard deviation of the estimate of the plate count from the detection time [(sy)x = 0.33 log unit]. Compared with the standard deviation of repeatability of the plate count method (0.07 log unit), the standard deviation of repeatability of the impedance method described is a significant improvement. The impedimetric experiments were done with a Bactometer M123. The detection times as measured by this instrument were compared with the plate counts at 30°C for samples of raw refrigerated farm milk. With this technique a good indication of the microbiological quality of raw milk can be obtained within 15 h.

1993 ◽  
Vol 56 (4) ◽  
pp. 336-337 ◽  
Author(s):  
JOSEP SERRA BONVEHI ◽  
ROSSEND ESCOLÁ JORDÁ

The number of mesophilic aerobic colonies was determined in 72 samples of mono- and multifloral honey from various sources by the plate count and the membrane filter methods. The presence of motile colonies made the plate counts unreliable. The microorganism producing these colonies was identified as Bacillus alvei. Colony counts could only be carried out in 27 of the samples when using the plate count method, while with the membrane filter method the number of colonies was counted in all the samples.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1186
Author(s):  
Nicla Marri ◽  
Francesca Losito ◽  
Loris Le Boffe ◽  
Gilberto Giangolini ◽  
Simonetta Amatiste ◽  
...  

The consumption of dairy products and the dairy industry are one of the main global agri-food sectors for its size, economic importance, and level of technology. Microbiological quality of pasteurized milk or other milk products is dependent on microbiological quality of raw milk. A variety of microbiological count methods is available for monitoring the hygienic quality of raw milk. Among them, the pour plate method is the official essay for counting the number of colony-forming units in milk samples according to International Organization for Standardization (ISO) No. 4833-1:2013. The aim of the present study is the validation of the Micro Biological Survey (MBS) method, against the reference plate-count method, for the assessment of the microbiological quality of raw milk. This comparative study, performed in collaboration with the Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri (IZSLT), demonstrates the accuracy of this alternative method for the determination of total viable bacterial count in cow’s raw milk. The results obtained with the MBS method highlight its potential as a valid tool for reliable microbiological analysis in dairy industries.


Author(s):  
Nicla Marri ◽  
Francesca Losito ◽  
Loris Le Boffe ◽  
Gilberto Giangolini ◽  
Simonetta Amatiste ◽  
...  

The consumption of dairy products and the dairy industry is one of the main global agro-food sectors for size, economic importance and level of technology. Microbiological quality of pasteurized milk or other milk products is dependent on microbiological quality of raw milk. A variety of microbiological count methods is available for monitoring the hygienic quality of raw milk. Among them, the pour plate method is the official essay for counting the number of colony forming units in milk samples according to ISO 4833-1:2013. The aim of the present study is the validation of the Micro Biological Survey (MBS) method, against the reference plate count method, for the assessment of the microbiological quality of raw milk. This comparative study, performed in collaboration with the “Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri” (IZSLT), demonstrates the accuracy of this alternative method for the determination of total viable bacterial count in cow’s raw milk. The results obtained with the MBS method highlighting its potential as a valid tool for reliable microbiological analysis in dairy industries.


1998 ◽  
Vol 61 (7) ◽  
pp. 833-838 ◽  
Author(s):  
NELIO J. ANDRADE ◽  
TRACY A. BRIDGEMAN ◽  
EDMUND A. ZOTTOLA

Enterococcus faecium attached to stainless steel chips (100 mm2) was treated with the following sanitizers: sodium hypochlorite, peracetic acid (PA), peracetic acid plus an organic acid (PAS), quaternary ammonium, organic acid, and anionic acid. The effectiveness of sanitizer solutions on planktonic cells (not attached) was evaluated by the Association of Official Analytical Chemists1 (AOAC) suspension test. The number of attached cells was determined by impedance measurement and plate count method after vortexing. The decimal reduction (DR) in numbers of the E. faecium population was determined for the three methods and was analyzed by analysis of variance (P < 0.05) using Statview software. The adhered cells were more resistant (P < 0.05) than nonadherent cells. The DR averages for all of the sanitizers for 30 s of exposure were 6.4, 2.2, and 2.5 for the AOAC suspension test, plate count method after vortexing, and impedance measurement, respectively. Plate count and impedance methods showed a difference (P < 0.05) after 30 s of sanitizer exposure but not after 2 min. The impedance measurement was the best method to measure adherent cells. Impedance measurement required the development of a quadratic regression. The equation developed from 82 samples is as follows: log CFU/chip = 0.2385T2 − 0.96T + 9.35, r2 = 0.92, P < 0.05, T = impedance detection time in hours. This method showed that the sanitizers PAS and PA were more effective against E. faecium than the other sanitizers. At 30 s, the impedance method recovered about 25 times more cells than the plate count method after vortexing. These data suggest that impedance measurement is the method of choice when evaluating the number of bacterial cells adhered to a surface.


Domiati cheese is the most popular brand of cheese ripened in brine in the Middle East in terms of consumed quantities. This study was performed to investigate the impact of the microbiological quality of the used raw materials, the applied traditional processing techniques and ripening period on the quality and safety of the produced cheese. Three hundred random composite samples were collected from three factories at Fayoum Governorate, Egypt. Collected samples represent twenty-five each of: raw milk, table salt, calf rennet, microbial rennet, water, environmental air, whey, fresh cheese, ripened cheese & swabs from: worker hands; cheese molds and utensils; tanks. All samples were examined microbiologically for Standard Plate Count (SPC), coliforms count, Staphylococcus aureus (S. aureus) count, total yeast & mould count, presence of E. coli, Salmonellae and Listeria monocytogenes (L. monocytogenes). The mean value of SPC, coliforms, S. aureus and total yeast & mould counts ranged from (79×102 CFU/m3 for air to 13×108 CFU/g for fresh cheese), (7×102 MPN/ cm2 for tank swabs to 80×106 MPN/ml for raw milk), (9×102 CFU/g for salt to 69×106 CFU/g for fresh cheese) and (2×102 CFU/cm2 for hand swabs to 60×104 CFU/g for fresh cheese), respectively. Whereas, E. coli, Salmonella and L. monocytogenes failed to be detected in all examined samples. There were significant differences in all determined microbiological parameters (p ≤0.05) between fresh and ripened cheese which may be attributed to different adverse conditions such as water activity, pH, salt content and temperature carried out to improve the quality of the product.


1992 ◽  
Vol 59 (3) ◽  
pp. 431-436 ◽  
Author(s):  
Sarah A. Langford ◽  
Rohan G. Kroll

The keeping quality of properly refrigerated pasteurized milk and cream is primarily determined by post-pasteurization contamination by Gram-negative psychrotrophic bacteria (Phillips et al. 1981; Schröder et al. 1982). Reliable and rapid methods of assessing the levels of contamination by these organisms are therefore of commercial interest.


2008 ◽  
pp. 67-75
Author(s):  
Ferenc Peles ◽  
Zsuzsa Máthéné Szigeti ◽  
Béla Béri ◽  
András Szabó

The importance of the quality of raw milk increased after Hungary had joined to the EU. On delivery of raw milk, the microbiological quality, especially total plate count of the milk is very important. Twenty-two farms (7 large, 4 medium-sized, and 11 small farms) were included in the study. We considered the different farm size, keeping- and milking circumstances during the selection of farms. The examined large farms use loose housing system (cubicle, deep litter) and milking parlour. Most of them use preand post-milking disinfection. In the medium-sized farms, loose,deep litter and tie-stall housing system, as well as milking parlour, pipeline milking and bucket milking occurred. All of them use preand post-milking disinfection. Small farms use tie-stall housing system, bucket milking and udder preparation by water. Unfortunately, they do not use pre- or post-milking disinfection. In the large and medium-sized farms mainly Holstein Friesian, in the small farms Hungarian Simmental breeds can be found.The aim of our research was to examine the microbiological status of the raw milk produced in dairy farms (total plate count, coliform count, Escherichia coli count, Staphylococcus aureus count, psychrotroph bacteria count, furthermore yeast and mold count); sources of the contamination; connection between the microbiological quality of produced milk and housing-, milking technologies of farms; furthermore the hygienic circumstances of milking and milk handling of the farms, by the examination of coliform bacteria and Escherichia coli contamination.During the examination of the connection between the different farm sizes, various housing- and milking forms and the microbiological characteristics we observed similar tendencies in the case of total plate count, coliform count, yeast and molds count, furthermore psychrotroph bacteria count. The value of  these parameters was significantly higher in small farms, and infarms which use tie-stall housing forms, bucket milking, udder preparation with water, and which do not use pre- and post-milking disinfection.The results showed that besides cooling, the milking procedure and the type of udder preparation had the largest effect on the total plate count. Statistical analysis shows that in medium and small farms the combination of pipeline milking – tie stall housing system – disinfectant preparation of the udder; in large farms the combination of milking parlour – loose cubicle housing system – dry preparation of the udder are the most appropriate in the aspect of the total plate count. We experienced that in farms where the hygienic instructions are not followed – and thereforeequipment used during the milking and handling of milk is very contaminated – or rather the separation of mastitic cows’ milk is not appropriate, different microorganisms may contaminate the produced milk. 


1983 ◽  
Vol 46 (1) ◽  
pp. 58-60 ◽  
Author(s):  
J. B. STONE ◽  
A. N. MYHR ◽  
I. DAVIE

Effect on the microbiological quality of milk of using a special cleaning detergent (Diversey-Wyandotte, Inc.) for low-temperature (initial 43.8°C, end of wash 35.4°C) washing in a milking parlor pipeline system was compared to regular high-temperature (initial 73°C, end of wash 43.8°C) wash of the system. Microbiological quality of the milk was determined by standard plate count (SPC) and psychrotrophic bacterial count (PBC). Cleanliness of equipment was evaluated by measurement of calcium deposits and visual inspection. Statistical analysis of data over time (June 5 to September 16, 1980) indicated no difference in SPC and PBC of milk between low-and high-temperature washing and, although there was a significant negative slope of PBC with time, this was due to factors other than treatment. Calcium soil deposition and visible evaluation of the equipment were not different for the wash temperatures.


1945 ◽  
Vol 14 (1-2) ◽  
pp. 175-183 ◽  
Author(s):  
Edith R. Hiscox

Bacteriological standards are used in the assessment of the quality of dried milk powder. From a knowledge of total numbers of bacteria and the relative numbers of the various types deductions are made as to the quality of the raw milk supply, the cleanliness of the plant and the over-all efficiency of the process. Figures have been published by several workers showing plate counts of roller- and spray-dried milk powder, but the technique of reconstituting and of plating varied. Sterile water appears to have been the general reconstituting fluid, but sometimes lithium hydroxide (N/10 solution) was used, especially when the powder was difficult to dissolve. The temperature of the reconstituting fluid is not always mentioned, but it appears to have varied from room temperature to 60–65° C. The usual incubation temperature for the plates was 37° C, though 21–22 and 55–56° C. were also used for special purposes. InStandard Methods for the Examination of Dairy Products, eighth edition (1), the technique laid down mentions water, carefully warmed to 43–49° C, as the reconstituting fluid, and either 37 or 32° C. (for 48 hr.) as the incubation temperature, the choice being left to theenforcement officials having jurisdiction. American workers have for some years strongly advocated the use of 32 rather than 37° C. as the incubation temperature for routine plate counts of samples of raw milk, the advantage being that slight inaccuracies in the temperature of the incubator have less influence on the plate count which is, moreover, closer to that obtained by direct counts. The data offered in this paper show that the advantage of a similar incubation temperature (30° C. was used in these experiments) is equally obvious in the plating of dried milk powder.


Sign in / Sign up

Export Citation Format

Share Document