scholarly journals Blocks in Constrained Random Graphs with Fixed Average Degree

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Konstantinos Panagiotou

International audience This work is devoted to the study of typical properties of random graphs from classes with structural constraints, like for example planar graphs, with the additional restriction that the average degree is fixed. More precisely, within a general analytic framework, we provide sharp concentration results for the number of blocks (maximal biconnected subgraphs) in a random graph from the class in question. Among other results, we discover that essentially such a random graph belongs with high probability to only one of two possible types: it either has blocks of at most logarithmic size, or there is a \emphgiant block that contains linearly many vertices, and all other blocks are significantly smaller. This extends and generalizes the results in the previous work [K. Panagiotou and A. Steger. Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '09), pp. 432-440, 2009], where similar statements were shown without the restriction on the average degree.

2002 ◽  
Vol Vol. 5 ◽  
Author(s):  
Nikolaos Fountoulakis ◽  
Colin McDiarmid

International audience We present a full analysis of the expected number of 'rigid' 3-colourings of a sparse random graph. This shows that, if the average degree is at least 4.99, then as n → ∞ the expected number of such colourings tends to 0 and so the probability that the graph is 3-colourable tends to 0. (This result is tight, in that with average degree 4.989 the expected number tends to ∞.) This bound appears independently in Kaporis \textitet al. [Kap]. We then give a minor improvement, showing that the probability that the graph is 3-colourable tends to 0 if the average degree is at least 4.989.


2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Mohammed Abdullah ◽  
Colin Cooper ◽  
Alan Frieze

International audience In this paper we establish the cover time of a random graph $G(\textbf{d})$ chosen uniformly at random from the set of graphs with vertex set $[n]$ and degree sequence $\textbf{d}$. We show that under certain restrictions on $\textbf{d}$, the cover time of $G(\textbf{d})$ is with high probability asymptotic to $\frac{d-1}{ d-2} \frac{\theta}{ d}n \log n$. Here $\theta$ is the average degree and $d$ is the $\textit{effective minimum degree}$. The effective minimum degree is the first entry in the sorted degree sequence which occurs order $n$ times.


10.37236/5327 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Deepak Bal ◽  
Patrick Bennett ◽  
Andrzej Dudek ◽  
Paweł Prałat

Let $G$ be a graph in which each vertex initially has weight 1. In each step, the weight from a vertex $u$ to a neighbouring vertex $v$ can be moved, provided that the weight on $v$ is at least as large as the weight on $u$. The total acquisition number of $G$, denoted by $a_t(G)$, is the minimum possible size of the set of vertices with positive weight at the end of the process.LeSaulnier, Prince, Wenger, West, and Worah asked for the minimum value of $p=p(n)$ such that $a_t(\mathcal{G}(n,p)) = 1$ with high probability, where $\mathcal{G}(n,p)$ is a binomial random graph. We show that $p = \frac{\log_2 n}{n} \approx 1.4427 \ \frac{\log n}{n}$ is a sharp threshold for this property. We also show that almost all trees $T$ satisfy $a_t(T) = \Theta(n)$, confirming a conjecture of West.


10.37236/1497 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Tom Bohman ◽  
Alan Frieze ◽  
Miklós Ruszinkó ◽  
Lubos Thoma

It is shown in this note that with high probability it is enough to destroy all triangles in order to get a cover graph from a random graph $G_{n,p}$ with $p\le \kappa \log n/n$ for any constant $\kappa < 2/3$. On the other hand, this is not true for somewhat higher densities: If $p\ge \lambda (\log n)^3 / (n\log\log n)$ with $\lambda > 1/8$ then with high probability we need to delete more edges than one from every triangle. Our result has a natural algorithmic interpretation.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Konstantinos Panagiotou ◽  
Benedikt Stufler ◽  
Kerstin Weller

International audience We study the uniform random graph $\mathsf{C}_n$ with $n$ vertices drawn from a subcritical class of connected graphs. Our main result is that the rescaled graph $\mathsf{C}_n / \sqrt{n}$ converges to the Brownian Continuum Random Tree $\mathcal{T}_{\mathsf{e}}$ multiplied by a constant scaling factor that depends on the class under consideration. In addition, we provide subgaussian tail bounds for the diameter $\text{D}(\mathsf{C}_n)$ and height $\text{H}(\mathsf{C}_n^\bullet)$ of the rooted random graph $\mathsf{C}_n^\bullet$. We give analytic expressions for the scaling factor of several classes, including for example the prominent class of outerplanar graphs. Our methods also enable us to study first passage percolation on $\mathsf{C}_n$, where we show the convergence to $\mathcal{T}_{\mathsf{e}}$ under an appropriate rescaling. On s’int´eresse au comportement asymptotique du graphe aleatoire $\mathsf{C}_n$ sur $n$ sommets pris uniformément d’une classe sous-critique des graphes sur n sommets. Dans cette contribution nous montrons que le graphe normalisée$\mathsf{C}_n / \sqrt{n}$ converges vers un arbre aléatoire brownien continue Te multiplie par une constante qui dépends de la classede graphes considérée. Nous calculons l’expression analytique pour cette constante dans plusieurs cas parmi la classefameuse des graphes planaire extérieure. En plus, on montre que le diamètre $\text{D}(\mathsf{C}_n)$ et la hauteur $\text{H}(\mathsf{C}_n^\bullet)$ de l’équivalent racine de $\mathsf{C}_n$ sont bornes par des bornes sous gaussiens. Notre méthode nous permettons aussi de l’étudier la percolation du premier passage sur $\mathsf{C}_n$. Nous montrons que $\mathcal{T}_{\mathsf{e}}$ sujet a une changement d’échelle appropriée


10.37236/3285 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Deepak Bal ◽  
Alan Frieze ◽  
Michael Krivelevich ◽  
Po-Shen Loh

For a fixed graph $H$ with $t$ vertices, an $H$-factor of a graph $G$ with $n$ vertices, where $t$ divides $n$, is a collection of vertex disjoint (not necessarily induced) copies of $H$ in $G$ covering all vertices of $G$. We prove that for a fixed tree $T$ on $t$ vertices and $\epsilon>0$, the random graph $G_{n,p}$, with $n$ a multiple of $t$, with high probability contains a family of edge-disjoint $T$-factors covering all but an $\epsilon$-fraction of its edges, as long as $\epsilon^4 n p \gg \log^2 n$. Assuming stronger divisibility conditions, the edge probability can be taken down to $p>\frac{C\log n}{n}$. A similar packing result is proved also for pseudo-random graphs, defined in terms of their degrees and co-degrees.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Konstantinos Panagiotou ◽  
Andreas Weißl

International audience This work is devoted to the understanding of properties of random graphs from graph classes with structural constraints. We propose a method that is based on the analysis of the behaviour of Boltzmann sampler algorithms, and may be used to obtain precise estimates for the maximum degree and maximum size of a biconnected block of a "typical'' member of the class in question. We illustrate how our method works on several graph classes, namely dissections and triangulations of convex polygons, embedded trees, and block and cactus graphs.


Algorithmica ◽  
2020 ◽  
Vol 82 (11) ◽  
pp. 3338-3389
Author(s):  
Ankit Chauhan ◽  
Tobias Friedrich ◽  
Ralf Rothenberger

Abstract Large real-world networks typically follow a power-law degree distribution. To study such networks, numerous random graph models have been proposed. However, real-world networks are not drawn at random. Therefore, Brach et al. (27th symposium on discrete algorithms (SODA), pp 1306–1325, 2016) introduced two natural deterministic conditions: (1) a power-law upper bound on the degree distribution (PLB-U) and (2) power-law neighborhoods, that is, the degree distribution of neighbors of each vertex is also upper bounded by a power law (PLB-N). They showed that many real-world networks satisfy both properties and exploit them to design faster algorithms for a number of classical graph problems. We complement their work by showing that some well-studied random graph models exhibit both of the mentioned PLB properties. PLB-U and PLB-N hold with high probability for Chung–Lu Random Graphs and Geometric Inhomogeneous Random Graphs and almost surely for Hyperbolic Random Graphs. As a consequence, all results of Brach et al. also hold with high probability or almost surely for those random graph classes. In the second part we study three classical $$\textsf {NP}$$ NP -hard optimization problems on PLB networks. It is known that on general graphs with maximum degree $$\Delta$$ Δ , a greedy algorithm, which chooses nodes in the order of their degree, only achieves a $$\Omega (\ln \Delta )$$ Ω ( ln Δ ) -approximation for Minimum Vertex Cover and Minimum Dominating Set, and a $$\Omega (\Delta )$$ Ω ( Δ ) -approximation for Maximum Independent Set. We prove that the PLB-U property with $$\beta >2$$ β > 2 suffices for the greedy approach to achieve a constant-factor approximation for all three problems. We also show that these problems are -hard even if PLB-U, PLB-N, and an additional power-law lower bound on the degree distribution hold. Hence, a PTAS cannot be expected unless = . Furthermore, we prove that all three problems are in if the PLB-U property holds.


10.37236/5025 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Asaf Ferber

We show how to adjust a very nice coupling argument due to McDiarmid in order to prove/reprove in a novel way results concerning Hamilton cycles in various models of random graph and hypergraphs. In particular, we firstly show that for $k\geq 3$, if $pn^{k-1}/\log n$ tends to infinity, then a random $k$-uniform hypergraph on $n$ vertices, with edge probability $p$, with high probability (w.h.p.) contains a loose Hamilton cycle, provided that $(k-1)|n$. This generalizes results of Frieze, Dudek and Frieze, and reproves a result of Dudek, Frieze, Loh and Speiss. Secondly, we show that there exists $K>0$ such for every $p\geq (K\log n)/n$ the following holds: Let $G_{n,p}$ be a random graph on $n$ vertices with edge probability $p$, and suppose that its edges are being colored with $n$ colors uniformly at random. Then, w.h.p. the resulting graph contains a Hamilton cycle with for which all the colors appear (a rainbow Hamilton cycle). Bal and Frieze proved the latter statement for graphs on an even number of vertices, where for odd $n$ their $p$ was $\omega((\log n)/n)$. Lastly, we show that for $p=(1+o(1))(\log n)/n$, if we randomly color the edge set of a random directed graph $D_{n,p}$ with $(1+o(1))n$ colors, then w.h.p. one can find a rainbow Hamilton cycle where all the edges are directed in the same way.


10.37236/227 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Amin Coja-Oghlan ◽  
André Lanka

We investigate the Laplacian eigenvalues of a random graph $G(n,\vec d)$ with a given expected degree distribution $\vec d$. The main result is that w.h.p. $G(n,\vec d)$ has a large subgraph core$(G(n,\vec d))$ such that the spectral gap of the normalized Laplacian of core$(G(n,\vec d))$ is $\geq1-c_0\bar d_{\min}^{-1/2}$ with high probability; here $c_0>0$ is a constant, and $\bar d_{\min}$ signifies the minimum expected degree. The result in particular applies to sparse graphs with $\bar d_{\min}=O(1)$ as $n\rightarrow\infty$. The present paper complements the work of Chung, Lu, and Vu [Internet Mathematics 1, 2003].


Sign in / Sign up

Export Citation Format

Share Document