APPLICATION OF AN EFFECTIVE METHOD ON THE SYSTEM OF NONLINEAR FUZZY INTEGRO-DIFFERENTIAL EQUATIONS

2021 ◽  
Vol 21 (2) ◽  
pp. 407-422
Author(s):  
ANGBEEN IQBAL ◽  
JAMSHAD AHMAD ◽  
QAZI MAHMOOD UL HASSAN

In real world physical applications purpose, it is complicated to acquire an exact solution of fuzzy differential equations due to complexities in fuzzy arithmetic and therefore creating the need for the use of reliable and efficient techniques in the solution of fuzzy differential equations. The purpose of this research paper is to utilize the reliable analytic approach of homotopy perturbation Sumudu transform method for better understanding of systems of non-linear fuzzy integro-differential equations, while using the concept of fuzzy parameter in certain dynamical problems to remove the hurdles faced in numerical approach. These mathematical models are of great interest in engineering and physics. Some numerical examples are also given to demonstrate the efficiency and superiority of the method, followed by graphical representation of the comparison of exact and approximated solution by using Maple 2017

2020 ◽  
Vol 19 ◽  
pp. 58-73
Author(s):  
Ahmad. A. H. Mtawal ◽  
Sameehah. R. Alkaleeli

In this paper, we suggest and analyze a technique by combining the Shehu transform method and the homotopy perturbation method. This method is called the Shehu transform homotopy method (STHM). This method is used to solve the time-fractional partial differential equations (TFPDEs) with proportional delay. The fractional derivative is described in Caputo's sense. The solutions proposed in the series converge rapidly to the exact solution. Some examples are solved to show the STHM is easy to apply.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Abdon Atangana ◽  
Adem Kılıçman

We make use of the properties of the Sumudu transform to solve nonlinear fractional partial differential equations describing heat-like equation with variable coefficients. The method, namely, homotopy perturbation Sumudu transform method, is the combination of the Sumudu transform and the HPM using He’s polynomials. This method is very powerful, and professional techniques for solving different kinds of linear and nonlinear fractional differential equations arising in different fields of science and engineering.


2018 ◽  
Vol 7 (4) ◽  
pp. 323-332 ◽  
Author(s):  
Amit Prakash ◽  
Vijay Verma ◽  
Devendra Kumar ◽  
Jagdev Singh

AbstractIn this work, we aim to apply a reliable analytic algorithm based on homotopy perturbation Sumudu transform method (HPSTM) to examine the nonlinear time-fractional coupled Burger’s equations. The approximate analytical solution and some numerical examples show the accuracy and efficiency of the proposed method, which is simple and accurate in comparison to the Adomain decomposition method (ADM), homotopy perturbation method (HPM) and generalized differential transform method (GDTM).


2018 ◽  
Vol 7 (3) ◽  
pp. 229-235 ◽  
Author(s):  
Amit Prakash ◽  
Hardish Kaur

AbstractIn present work, nonlinear fractional partial differential equations namely transport equation and Fokker-Planck equation involving local fractional differential operators, are investigated by means of the local fractional homotopy perturbation Sumudu transform method. The proposed method is a coupling of homotopy perturbation method with local fractional Sumudu transform and is used to describe the non-differentiable problems. Numerical simulation results are projected to show the efficiency of the proposed technique.


2020 ◽  
Vol 9 (1) ◽  
pp. 370-381
Author(s):  
Dinkar Sharma ◽  
Gurpinder Singh Samra ◽  
Prince Singh

AbstractIn this paper, homotopy perturbation sumudu transform method (HPSTM) is proposed to solve fractional attractor one-dimensional Keller-Segel equations. The HPSTM is a combined form of homotopy perturbation method (HPM) and sumudu transform using He’s polynomials. The result shows that the HPSTM is very efficient and simple technique for solving nonlinear partial differential equations. Test examples are considered to illustrate the present scheme.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Seyyedeh Roodabeh Moosavi Noori ◽  
Nasir Taghizadeh

AbstractIn this study, a hybrid technique for improving the differential transform method (DTM), namely the modified differential transform method (MDTM) expressed as a combination of the differential transform method, Laplace transforms, and the Padé approximant (LPDTM) is employed for the first time to ascertain exact solutions of linear and nonlinear pantograph type of differential and Volterra integro-differential equations (DEs and VIDEs) with proportional delays. The advantage of this method is its simple and trusty procedure, it solves the equations straightforward and directly without requiring large computational work, perturbations or linearization, and enlarges the domain of convergence, and leads to the exact solution. Also, to validate the reliability and efficiency of the method, some examples and numerical results are provided.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Baiqing Sun ◽  
Kun Tang ◽  
Hongmei Zhang ◽  
Shan Xiong

Singularity problem exists in various branches of applied mathematics. Such ordinary differential equations accompany singular coefficients. In this paper, by using the properties of reproducing kernel, the exact solution expressions of dual singular problem are given in the reproducing kernel space and studied, also for a class of singular problem. For the binary equation of singular points, I put it into the singular problem first, and then reuse some excellent properties which are applied to solve the method of solving differential equations for its exact solution expression of binary singular integral equation in reproducing kernel space, and then obtain its approximate solution through the evaluation of exact solutions. Numerical examples will show the effectiveness of this method.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ravi Shanker Dubey ◽  
Badr Saad T. Alkahtani ◽  
Abdon Atangana

An efficient approach based on homotopy perturbation method by using Sumudu transform is proposed to solve some linear and nonlinear space-time fractional Fokker-Planck equations (FPEs) in closed form. The space and time fractional derivatives are considered in Caputo sense. The homotopy perturbation Sumudu transform method (HPSTM) is a combined form of Sumudu transform, homotopy perturbation method, and He’s polynomials. The nonlinear terms can be easily handled by the use of He’s polynomials. Some examples show that the HPSTM is an effective tool for solving many space time fractional partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document