Respiratory and Gut Microbiota of Children with Cystic Fibrosis: A Pilot Study

2021 ◽  
Vol 5 (1) ◽  
pp. 1-7
Author(s):  
Jannaina Ferreira de Melo Vasco ◽  
Carlos A. Riedi ◽  
Camila Marconi ◽  
Keite S. Nogueira ◽  
Luiza Souza Rodrigues ◽  
...  

Differences in the clinical presentation of cystic fibrosis (CF) may be due to microbiota components and their relationship with the host’s immune system. In this pilot study, we aimed to investigate the composition of the respiratory and gut microbiota of a cohort of clinically stable children with CF, homozygous for the p.Phe508del mutation. Oropharyngeal swabs and stool samples were obtained from these children attending the CF referral clinics at the Hospital of Clinics, Federal University Paraná (CHC – UFPR). Oropharyngeal and gut microbiota were assessed by V3-V4 sequencing of the 16S ribosomal RNA, and bioinformatics analyses were performed using a proprietary pipeline. We identified a total of 456 bacterial taxa belonging to 164 genera, of which 65 (39.6 %) were common to both the respiratory and gastrointestinal tracts. Taxa from eight genera dominated more than 75 % of the microbial composition of both the niches. Among these dominant taxa, only Prevotella spp. were common to both the sites. Overall, the respiratory and gut microbiota were homogeneous among all the patients. Longitudinal studies targeting a larger cohort are important for an improved understanding of how the composition of bacterial communities is related to changes in the clinical status of CF

Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 246
Author(s):  
Felix C.F. Schmitt ◽  
Martin Schneider ◽  
William Mathejczyk ◽  
Markus A. Weigand ◽  
Jane C. Figueiredo ◽  
...  

Changes in the gut microbiome have already been associated with postoperative complications in major abdominal surgery. However, it is still unclear whether these changes are transient or a long-lasting effect. Therefore, the aim of this prospective clinical pilot study was to examine long-term changes in the gut microbiota and to correlate these changes with the clinical course of the patient. Methods: In total, stool samples of 62 newly diagnosed colorectal cancer patients undergoing primary tumor resection were analyzed by 16S-rDNA next-generation sequencing. Stool samples were collected preoperatively in order to determine the gut microbiome at baseline as well as at 6, 12, and 24 months thereafter to observe longitudinal changes. Postoperatively, the study patients were separated into two groups—patients who suffered from postoperative complications (n = 30) and those without complication (n = 32). Patients with postoperative complications showed a significantly stronger reduction in the alpha diversity starting 6 months after operation, which does not resolve, even after 24 months. The structure of the microbiome was also significantly altered from baseline at six-month follow-up in patients with complications (p = 0.006). This was associated with a long-lasting decrease of a large number of species in the gut microbiota indicating an impact in the commensal microbiota and a long-lasting increase of Fusobacterium ulcerans. The microbial composition of the gut microbiome shows significant changes in patients with postoperative complications up to 24 months after surgery.


Author(s):  
Xun Kang ◽  
Yanhong Wang ◽  
Siping Li ◽  
Xiaomei Sun ◽  
Xiangyang Lu ◽  
...  

The midgut microbial community composition, structure, and function of field-collected mosquitoes may provide a way to exploit microbial function for mosquito-borne disease control. However, it is unclear how adult mosquitoes acquire their microbiome, how the microbiome affects life history traits and how the microbiome influences community structure. We analyzed the composition of 501 midgut bacterial communities from field-collected adult female mosquitoes, including Aedes albopictus, Aedes galloisi, Culex pallidothorax, Culex pipiens, Culex gelidus, and Armigeres subalbatus, across eight habitats using the HiSeq 4000 system and the V3−V4 hyper-variable region of 16S rRNA gene. After quality filtering and rarefaction, a total of 1421 operational taxonomic units, belonging to 29 phyla, 44 families, and 43 genera were identified. Proteobacteria (75.67%) were the most common phylum, followed by Firmicutes (10.38%), Bacteroidetes (6.87%), Thermi (4.60%), and Actinobacteria (1.58%). The genera Rickettsiaceae (33.00%), Enterobacteriaceae (20.27%), Enterococcaceae (7.49%), Aeromonadaceae (7.00%), Thermaceae (4.52%), and Moraxellaceae (4.31%) were dominant in the samples analyzed and accounted for 76.59% of the total genera. We characterized the midgut bacterial communities of six mosquito species in Hainan province, China. The gut bacterial communities were different in composition and abundance, among locations, for all mosquito species. There were significant differences in the gut microbial composition between some species and substantial variation in the gut microbiota between individuals of the same mosquito species. There was a marked variation in different mosquito gut microbiota within the same location. These results might be useful in the identification of microbial communities that could be exploited for disease control.


2014 ◽  
Author(s):  
Andrew Nelson ◽  
Audrey Perry ◽  
Christopher J Stewart ◽  
Clare V Lanyon ◽  
John D Perry ◽  
...  

Aims: The purpose of this study was to analyse the bacterial and fungal turnover in the lungs of cystic fibrosis patients who were ΔF508 homo- and hetero-zygotes. Further to this we wanted to identify the effects that Intravenous (IV) antibiotic perturbations had on the community and most importantly, whether exacerbations in these patients could be attributed to microbial species or communities. Methods: A total of 149 samples were collected from 18 adult CF patients attending a clinic at the RVI hospital, Newcastle upon Tyne. The samples were subject to DNA extraction followed by bacterial and fungal community DGGE analysis as well as qPCR analysis of the bacterial load. Results: We have found that bacterial and fungal communities present in the CF lung are not different when patients are suffering an exacerbation. Further to this, we have found that bacterial communities in the CF lung are disturbed by IV antibiotic administration and cause increased species turnover. We have shown that fungal taxa are capable of chronically colonising the CF lung. Conclusions: Our study adds further evidence to the assertion that changes in bacterial communities are not the cause of CF exacerbations. However, we were able to demonstrate that acquisition of new bacterial taxa was strongly associated with exacerbations in one patient. This study is the first to illustrate that fungi can persist in the CF lung but are not associated with clinical status.


2021 ◽  
Author(s):  
Artur Trzebny ◽  
Anna Slodkowicz-Kowalska ◽  
Johanna Björkroth ◽  
Miroslawa Dabert

AbstractThe animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.


2021 ◽  
pp. 1-13
Author(s):  
Yunzhe Zhou ◽  
Yan Wang ◽  
Meina Quan ◽  
Huiying Zhao ◽  
Jianping Jia

Background: Gut microbiota can influence human brain function and behavior. Recent studies showed that gut microbiota might play an important role in the pathogenesis of Alzheimer’s disease (AD). Objective: To investigate the composition of gut microbiota in AD patients and their association with cognitive function and neuropsychiatric symptoms (NPS). Methods: The fecal samples from 60 AD patients (30 with NPS and 30 without NPS) and 32 healthy control subjects (HC) were collected and analyzed by 16S ribosomal RNA sequencing. The functional variations of gut microbiota were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States. The correlation between different bacterial taxa and cognitive (Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR)), and NPS measures were analyzed. Results: The fecal microbial composition of AD patients was quite distinct from HC. Bifidobacterium, Sphingomonas, Lactobacillus, and Blautia were enriched, while Odoribacter, Anaerobacterium, and Papillibacter were reduced. AD patients with NPS showed decreased Chitinophagaceae, Taibaiella, and Anaerobacterium compared with those without NPS. Functional pathways were different between AD and HC, and between AD patients with and without NPS. Correlation analysis showed that Sphingomonas correlated negatively with MMSE; Anaerobacterium and Papillibacter correlated positively with MMSE and negatively with CDR. Cytophagia, Rhodospirillaceae, and Cellvibrio correlated positively with NPS, while Chitinophagaceae, Taibaiella, and Anaerobacterium correlated negatively with NPS. Conclusion: AD patients have gut microbiota alterations related to cognition, and differential taxa between AD patients with and without NPS associated differently with NPS domains, which helps further understand the pathogenesis of AD and explore potential therapeutic targets.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sara A. Zahran ◽  
Marwa Ali-Tammam ◽  
Amal E. Ali ◽  
Ramy K. Aziz

Abstract Background Through an arsenal of microbial enzymes, the gut microbiota considerably contributes to human metabolic processes, affecting nutrients, drugs, and environmental poisons. Azoreductases are a predominant group of microbiota-derived enzymes involved in xenobiotic metabolism and drug activation, but little is known about how compositional changes in the gut microbiota correlate with its azo-reducing activity. Results To this end, we used high-throughput 16S rRNA amplicon sequencing, with Illumina MiSeq, to determine the microbial community composition of stool samples from 16 adults with different azo-reducing activity. High azo-reducing activity positively correlated with the relative abundance of phylum Firmicutes (especially genera Streptococcus and Coprococcus) but negatively with phylum Bacteroidetes (especially genus Bacteroides). Typical variations in the Firmicutes-to-Bacteroidetes and Prevotella-to-Bacteroides ratios were observed among samples. Multivariate analysis of the relative abundance of key microbial taxa and other diversity parameters confirmed the Firmicutes proportion as a major variable differentiating high and non-azo-reducers, while Bacteroidetes relative abundance was correlated with azo-reduction, sex, and BMI. Conclusions This pilot study showed that stool samples with higher azo-reducing activity were enriched in Firmicutes but with relatively fewer Bacteroidetes. More samples and studies from different geographical areas are needed to bolster this conclusion. Better characterization of different azoreductase-producing gut microbes will increase our knowledge about the fate and differential human responses to azodye-containing drugs or orally consumed chemicals, thus contributing to efforts towards implementing microbiome testing in precision medicine and toxicology.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1278
Author(s):  
Antonius T. Otten ◽  
Arno R. Bourgonje ◽  
Vera Peters ◽  
Behrooz Z. Alizadeh ◽  
Gerard Dijkstra ◽  
...  

Gut microbes are crucial to human health, but microbial composition is often disturbed in a number of human diseases. Accumulating evidence points to nutritional modulation of the gut microbiota as a potentially beneficial therapeutic strategy. Vitamin C (ascorbic acid) may be of particular interest as it has known antioxidant and anti-inflammatory properties. In this study, we investigated whether supplementation with high-dose vitamin C may favourably affect the composition of the gut microbiota. In this pilot study, healthy human participants received 1000 mg vitamin C supplementation daily for two weeks. Gut microbiota composition was analysed before and after intervention by performing faecal 16S rRNA gene sequencing. In total, 14 healthy participants were included. Daily supplementation of high-dose vitamin C led to an increase in the relative abundances of Lachnospiraceae (p < 0.05), whereas decreases were observed for Bacteroidetes (p < 0.01), Enterococci (p < 0.01) and Gemmiger formicilis (p < 0.05). In addition, trends for bacterial shifts were observed for Blautia (increase) and Streptococcus thermophilus (decrease). High-dose vitamin C supplementation for two weeks shows microbiota-modulating effects in healthy individuals, with several beneficial shifts of bacterial populations. This may be relevant as these bacteria have anti-inflammatory properties and strongly associate with gut health.


2014 ◽  
Author(s):  
Andrew Nelson ◽  
Audrey Perry ◽  
Christopher J Stewart ◽  
Clare V Lanyon ◽  
John D Perry ◽  
...  

Aims: The purpose of this study was to analyse the bacterial and fungal turnover in the lungs of cystic fibrosis patients who were ΔF508 homo- and hetero-zygotes. Further to this we wanted to identify the effects that Intravenous (IV) antibiotic perturbations had on the community and most importantly, whether exacerbations in these patients could be attributed to microbial species or communities. Methods: A total of 149 samples were collected from 18 adult CF patients attending a clinic at the RVI hospital, Newcastle upon Tyne. The samples were subject to DNA extraction followed by bacterial and fungal community DGGE analysis as well as qPCR analysis of the bacterial load. Results: We have found that bacterial and fungal communities present in the CF lung are not different when patients are suffering an exacerbation. Further to this, we have found that bacterial communities in the CF lung are disturbed by IV antibiotic administration and cause increased species turnover. We have shown that fungal taxa are capable of chronically colonising the CF lung. Conclusions: Our study adds further evidence to the assertion that changes in bacterial communities are not the cause of CF exacerbations. However, we were able to demonstrate that acquisition of new bacterial taxa was strongly associated with exacerbations in one patient. This study is the first to illustrate that fungi can persist in the CF lung but are not associated with clinical status.


CHEST Journal ◽  
2005 ◽  
Vol 127 (1) ◽  
pp. 308-317 ◽  
Author(s):  
Clark Bishop ◽  
Valerie M. Hudson ◽  
Sterling C. Hilton ◽  
Cathleen Wilde

2019 ◽  
Vol 51 (8) ◽  
pp. 368-378 ◽  
Author(s):  
Rong Yang ◽  
Renyuan Gao ◽  
Sainan Cui ◽  
Hui Zhong ◽  
Xiaohui Zhang ◽  
...  

The gut microbiota of infants changes over time and is affected by various factors during early life. However, rarely have studies explored the gut microbiota development and affecting factors in the Chinese infant population. We enrolled 102 infants and collected stool samples from them at birth, 42 days, 3 mo, and 6 mo after delivery to characterize the microbiota signatures and the effects of different factors that modulate the gut microbiota diversity, composition, and function over time. DNA extracted from the bacteria in the stool samples was subjected to high-throughput sequencing and bioinformatics analysis. Microbial richness and diversity increased significantly during the first 6 mo of life. Beneficial microbes such as Bifidobacterium, Lactobacillus, and Blautia were found to be increased in the infant’s gut at 6 mo, while pathological bacteria such as Escherichia-Shigella, Enterobacter, Staphylococcus, and Klebsiella decreased over time. The changes in the infant delivery mode and infant-feeding mode only produced changes in the microbial composition, whereas changes in bacterial richness, diversity and effects sizes on the microbial architecture were all time dependent. A comparison of infant delivery modes conveyed a decrease in abundance of Bacteroidetes over time in the gut of infants born via C-section, while the Bifidobacterium was the most dominant genus in the vaginal delivery group. The gut microbiota of infants changed extensively during the first 6 mo of life. Delivery and feeding modes were strong factors that significantly affected microbial architecture and functions.


Sign in / Sign up

Export Citation Format

Share Document