scholarly journals Autoregressive Neural Network EURO STOXX 50 Forecasting Model Based on Principal Component Stock Selection

2021 ◽  
Vol 6 (2) ◽  
pp. 71-81
Author(s):  
Ahmad Abu Alrub ◽  
Tahir Abu Awwad ◽  
Emad Al-Saadi

Purpose: The given study looks into forecast accuracy of a traditional ARIMA model while comparing it to Autoregressive Neural Network (AR-NN) model for 984 trading days on EURO STOXX 50 Index. Methodology: A hybrid model is constructed by combining ARIMA model and feed-forward neural network model aiming to attain linear and non-linear price fluctuations. The study also incorporates the investigation of component stock prices of the index, that can be selected to improve the predictability of the hybrid model.  Findings:The reached ARIMA (1,1,3) model showed higher scores than AR-NN model however integrating selected exogenous stock prices from the index components gave much notable accuracy results. The selected exogenous stocks were extracted after conducting PCA and model scores were compared via MAPE and RMSE. Unique contribution to theory, practice and policy: The major contribution of this work is to provide the researcher and fnancial analyst a systematic approach for development of intelligent methodology to forecast stock market. This paper also presents the  outlines of proposed work with the aim to enhance the performance of existing techniques. Therefore, Empirical analysis is employed along with a hybrid model based on a feed-forward Neural Network. Lesser error is attained on the test set of Index stock price by comparing the performance of ARIMA and AR-NN while forecasting. Hence, The components of extracted Index stock price like exogenous features are added to make an influence from the AR-NN model. 

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wei Zhang ◽  
Ke-xin Tao ◽  
Jun-feng Li ◽  
Yan-chun Zhu ◽  
Jing Li

The interactive information in blockchain architecture establishes an effective communication channel between users and enterprises, enabling them to communicate in a comprehensive and effective manner. Therefore, taking blockchain interactive information as the research object, this paper explores how the intervention of official information on investors affects the stock price movement and then makes predictions on stock prices according to the emotional tendency of interactive information. With the contextual information fusion, a sentiment computing model based on a convolutional neural network is established to extract and quantify the emotional features of blockchain interactive information. Combined with investors’ emotional features, the stock price prediction model based on long short-term memory is proposed. The experiment results show that the accuracy of the model has been improved by incorporating the intervened emotional features, thereby proving that information clarification can have a positive effect on the stock price.


2014 ◽  
Vol 989-994 ◽  
pp. 1635-1640
Author(s):  
Hong Liu ◽  
Xiao Yan Lv

In view of the deficiency of the standard back-propagation algorithm based on steepest descent method, a new kind of optimization strategy called invasive weed optimization (IWO) algorithm is introduced into the training process of feed-forward neural networks, and then a prediction model based on IWO feed-forward neural network (IWO-NN) is given. By the dynamic adjustment of standard deviation of the distribution of offspring individuals in IWO, the local convergence speed of networks is improved and the defect of trapping into a local optimum is reduced. By the empirical study of stock price prediction in Sany Heavy Industry, the results show that this method has better global astringency, robustness, and it is insensitive to initial values.


2014 ◽  
Vol 989-994 ◽  
pp. 1646-1651 ◽  
Author(s):  
Xiao Yan Lv ◽  
Si Long Sun ◽  
Hong Liu

In view of the deficiency of the basic back-propagation (BP) algorithm based on steepest descent method. Bat algorithm (BA) in intelligent optimization is introduced into the training process of feed-forward neural networks, capturing the optimal solution of the objective function with a small population size and less number of iterations, and a prediction model based on BA feed-forward neural network (BA-NN) is given. By the empirical study of stock price prediction in Sany Heavy Industry, the results show that this method has advantages of frequency tuning and dynamic control of exploration and exploitation by automatic switching to intensive exploitation if necessary.


2021 ◽  
Vol 35 (6) ◽  
pp. 483-488
Author(s):  
Asmaa Y. Fathi ◽  
Ihab A. El-Khodary ◽  
Muhammad Saafan

The primary purpose of trading in stock markets is to profit from buying and selling listed stocks. However, numerous factors can influence the stock prices, such as the company's present financial situation, news, rumor, macroeconomics, psychological, economic, political, and geopolitical factors. Consequently, tremendous challenges already exist in predicting noisy stock prices. This paper proposes a hybrid model integrating the singular spectrum analysis (SSA) and the backpropagation neural network (BPNN) to forecast daily closing prices in stock markets. The model first decomposes the stock prices into several components using the SSA. Then, the extracted components are utilized for training BPNNs to forecast future prices. Compared with the BPNN, the hybrid SSA-BPNN model demonstrates a better predictive performance, indicating the SSA's ability to extract hidden information and reduce the noise effect of the original time series.


2021 ◽  
pp. 115490
Author(s):  
Gabriel Trierweiler Ribeiro ◽  
André Alves Portela Santos ◽  
Viviana Cocco Mariani ◽  
Leandro dos Santos Coelho

Sign in / Sign up

Export Citation Format

Share Document