scholarly journals A New Approximation Method for Finding Zeros of Maximal Monotone Operators

2021 ◽  
Vol 31 (2) ◽  
pp. 117-124

One of the major problems in the theory of maximal monotone operators is to find a point in the solution set Zer( ), set of zeros of maximal monotone mapping . The problem of finding a zero of a maximal monotone in real Hilbert space has been investigated by many researchers. Rockafellar considered the proximal point algorithm and proved the weak convergence of this algorithm with the maximal monotone operator. Güler gave an example showing that Rockafellar’s proximal point algorithm does not converge strongly in an infinite-dimensional Hilbert space. In this paper, we consider an explicit method that is strong convergence in an infinite-dimensional Hilbert space and a simple variant of the hybrid steepest-descent method, introduced by Yamada. The strong convergence of this method is proved under some mild conditions. Finally, we give an application for the optimization problem and present some numerical experiments to illustrate the effectiveness of the proposed algorithm.

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Oganeditse A. Boikanyo

We construct a sequence of proximal iterates that converges strongly (under minimal assumptions) to a common zero of two maximal monotone operators in a Hilbert space. The algorithm introduced in this paper puts together several proximal point algorithms under one frame work. Therefore, the results presented here generalize and improve many results related to the proximal point algorithm which were announced recently in the literature.


2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Lingling Huang ◽  
Sanyang Liu ◽  
Weifeng Gao

This paper presents and analyzes a strongly convergent approximate proximal point algorithm for finding zeros of maximal monotone operators in Hilbert spaces. The proposed method combines the proximal subproblem with a more general correction step which takes advantage of more information on the existing iterations. As applications, convex programming problems and generalized variational inequalities are considered. Some preliminary computational results are reported.


2019 ◽  
Vol 52 (1) ◽  
pp. 274-282
Author(s):  
Behzad Djafari Rouhani ◽  
Mohsen Rahimi Piranfar

AbstractWe consider the following second order evolution equation modelling a nonlinear oscillator with damping$$\ddot{u} (t) + \gamma \dot u(t) + Au\left( t \right) = f\left( t \right),\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\rm{SEE}}} \right)$$where A is a maximal monotone and α-inverse strongly monotone operator in a real Hilbert space H. With suitable assumptions on γ and f(t) we show that A−1(0) ≠ ∅, if and only if (SEE) has a bounded solution and in this case we provide approximation results for elements of A−1(0) by proving weak and strong convergence theorems for solutions to (SEE) showing that the limit belongs to A−1(0). As a discrete version of (SEE), we consider the following second order difference equation$${u_{n + 1}} - {u_n} - {\alpha _n}\left( {{u_n} - {u_{n - 1}}} \right) + {\lambda _n}A{u_{n + 1}\ni} f\left( t \right),$$where A is assumed to be only maximal monotone (possibly multivalued). By using the results in [Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417], we prove ergodic, weak and strong convergence theorems for the sequence un, and show that the limit is the asymptotic center of un and belongs to A−1(0). This again shows that A−1(0) ≠ ∅ if and only if un is bounded. Also these results solve an open problem raised in [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3–11], namely the study of the convergence results for the inexact inertial proximal algorithm. Our paper is motivated by the previous results in [Djafari Rouhani B., Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces, J. Math. Anal. Appl., 1990, 147, 465–476; Djafari Rouhani B., Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space, J. Math. Anal. Appl., 1990, 151, 226–235; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to some second order evolution systems, Rocky Mountain J. Math., 2010, 40, 1289–1311; Djafari Rouhani B., Khatibzadeh H., A strong convergence theorem for solutions to a nonhomogeneous second order evolution equation, J. Math. Anal. Appl., 2010, 363, 648–654; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to a class of second order nonhomogeneous evolution equations, Nonlinear Anal., 2009, 70, 4369–4376; Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411–417] and significantly improves upon the results of [Attouch H., Maingé P. E., Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects, ESAIM Control Optim. Calc. Var., 2011, 17(3), 836–857], and [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3–11].


2004 ◽  
Vol 2004 (3) ◽  
pp. 239-249 ◽  
Author(s):  
Fumiaki Kohsaka ◽  
Wataru Takahashi

We first introduce a modified proximal point algorithm for maximal monotone operators in a Banach space. Next, we obtain a strong convergence theorem for resolvents of maximal monotone operators in a Banach space which generalizes the previous result by Kamimura and Takahashi in a Hilbert space. Using this result, we deal with the convex minimization problem and the variational inequality problem in a Banach space.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Hongjie Liu ◽  
Junqing Wang ◽  
Qiansheng Feng

We prove the strong convergence theorems for finding a common element of the set of fixed points of a nonspreading mappingTand the solution sets of zero of a maximal monotone mapping and anα-inverse strongly monotone mapping in a Hilbert space. Manaka and Takahashi (2011) proved weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space; there we introduced new iterative algorithms and got some strong convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Yonghong Yao ◽  
Muhammad Aslam Noor ◽  
Yeong-Cheng Liou

We suggest and analyze a modified extragradient method for solving variational inequalities, which is convergent strongly to the minimum-norm solution of some variational inequality in an infinite-dimensional Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document