monotone mapping
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 17)

H-INDEX

6
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2684
Author(s):  
Rahul Shukla ◽  
Rajendra Pant ◽  
Hemant Kumar Nashine ◽  
Manuel De la De la Sen

The principal goal of this work is to investigate new sufficient conditions for the existence and convergence of positive definite solutions to certain classes of matrix equations. Under specific assumptions, the basic tool in our study is a monotone mapping, which admits a unique fixed point in the setting of a partially ordered Banach space. To estimate solutions to these matrix equations, we use the Krasnosel’skiĭ iterative technique. We also discuss some useful examples to illustrate our results.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 489
Author(s):  
Aviv Gibali ◽  
Olaniyi S. Iyiola ◽  
Lanre Akinyemi ◽  
Yekini Shehu

Our main focus in this work is the classical variational inequality problem with Lipschitz continuous and pseudo-monotone mapping in real Hilbert spaces. An adaptive reflected subgradient-extragradient method is presented along with its weak convergence analysis. The novelty of the proposed method lies in the fact that only one projection onto the feasible set in each iteration is required, and there is no need to know/approximate the Lipschitz constant of the cost function a priori. To illustrate and emphasize the potential applicability of the new scheme, several numerical experiments and comparisons in tomography reconstruction, Nash–Cournot oligopolistic equilibrium, and more are presented.


Filomat ◽  
2021 ◽  
Vol 35 (3) ◽  
pp. 1033-1043
Author(s):  
L.C. Ceng ◽  
C.S. Fong

In this paper, we introduce a general viscosity-type extragradient method for solving the fixed point problem of an asymptotically nonexpansive mapping and the variational inclusion problem with two accretive operators. We obtain a strong convergence theorem in the setting of Banach spaces. In terms of this theorem, we establish the strong convergence result for solving the fixed point problem (FPP) of an asymptotically nonexpansive mapping and the variational inequality problem (VIP) for an inverse-strongly monotone mapping in the framework of Hilbert spaces. Finally, this result is applied to deal with the VIP and FPP in an illustrating example.


2021 ◽  
Vol 54 (1) ◽  
pp. 335-358
Author(s):  
Oluwatosin T. Mewomo ◽  
Olawale K. Oyewole

Abstract In this paper, we study the problem of finding a common solution of split generalized vector mixed equlibrium problem (SGVMEP), fixed point problem (FPP) and variational inequality problem (VIP). We propose an inertial-type iterative algorithm, which uses a projection onto a feasible set and a linesearch, which can be easily calculated. We prove a strong convergence of the sequence generated by the proposed algorithm to a common solution of SGVMEP, fixed point of a quasi- ϕ \phi -nonexpansive mapping and VIP for a general class of monotone mapping in 2-uniformly convex and uniformly smooth Banach space E 1 {E}_{1} and a smooth, strictly convex and reflexive Banach space E 2 {E}_{2} . Some numerical examples are presented to illustrate the performance of our method. Our result improves some existing results in the literature.


2020 ◽  
Vol 53 (1) ◽  
pp. 208-224 ◽  
Author(s):  
Timilehin Opeyemi Alakoya ◽  
Lateef Olakunle Jolaoso ◽  
Oluwatosin Temitope Mewomo

AbstractIn this work, we introduce two new inertial-type algorithms for solving variational inequality problems (VIPs) with monotone and Lipschitz continuous mappings in real Hilbert spaces. The first algorithm requires the computation of only one projection onto the feasible set per iteration while the second algorithm needs the computation of only one projection onto a half-space, and prior knowledge of the Lipschitz constant of the monotone mapping is not required in proving the strong convergence theorems for the two algorithms. Under some mild assumptions, we prove strong convergence results for the proposed algorithms to a solution of a VIP. Finally, we provide some numerical experiments to illustrate the efficiency and advantages of the proposed algorithms.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 818 ◽  
Author(s):  
Jamilu Abubakar ◽  
Poom Kumam ◽  
Abdulkarim Hassan Ibrahim ◽  
Anantachai Padcharoen

The relaxed inertial Tseng-type method for solving the inclusion problem involving a maximally monotone mapping and a monotone mapping is proposed in this article. The study modifies the Tseng forward-backward forward splitting method by using both the relaxation parameter, as well as the inertial extrapolation step. The proposed method follows from time explicit discretization of a dynamical system. A weak convergence of the iterates generated by the method involving monotone operators is given. Moreover, the iterative scheme uses a variable step size, which does not depend on the Lipschitz constant of the underlying operator given by a simple updating rule. Furthermore, the proposed algorithm is modified and used to derive a scheme for solving a split feasibility problem. The proposed schemes are used in solving the image deblurring problem to illustrate the applicability of the proposed methods in comparison with the existing state-of-the-art methods.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 435
Author(s):  
Wataru Takahashi

In this paper, using a new shrinking projection method, we deal with the strong convergence for finding a common point of the sets of zero points of a maximal monotone mapping, common fixed points of a finite family of demimetric mappings and common zero points of a finite family of inverse strongly monotone mappings in a Hilbert space. Using this result, we get well-known and new strong convergence theorems in a Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document