scholarly journals Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

2014 ◽  
Vol 14 (14) ◽  
pp. 7431-7443 ◽  
Author(s):  
K. Pohl ◽  
M. Cantwell ◽  
P. Herckes ◽  
R. Lohmann

Abstract. Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emission plume of biomass and agricultural burning products. Atmospheric particulate matter samples across the tropical Atlantic boundary layer were collected in the summer of 2010 during the southern hemispheric dry season when open fire events were frequent in Africa and South America. The highest black carbon concentrations were detected in the Caribbean Sea and within the African plume, with a regional average of 0.6 μg m−3 for both. The lowest average concentrations were measured off the coast of South America at 0.2 to 0.3 μg m−3. Samples were quantified for black carbon using multiple methods to provide insights into the form and stability of the carbonaceous aerosols (i.e., thermally unstable organic carbon, soot like, and charcoal like). Soot-like aerosols composed up to 45% of the carbonaceous aerosols in the Caribbean Sea to as little as 4% within the African plume. Charcoal-like aerosols composed up to 29% of the carbonaceous aerosols over the oligotrophic Sargasso Sea, suggesting that non-soot-like particles could be present in significant concentrations in remote environments. To better apportion concentrations and forms of black carbon, multiple detection methods should be used, particularly in regions impacted by biomass burning emissions.

2013 ◽  
Vol 13 (11) ◽  
pp. 29785-29810
Author(s):  
K. Pohl ◽  
M. Cantwell ◽  
P. Herckes ◽  
R. Lohmann

Abstract. Black carbon (BC) is the highly carbonaceous byproduct of biomass burning and fossil fuel combustion with a composition ranging from thermally stable soot to less recalcitrant charcoal. Atmospheric particulate matter samples across the tropical Atlantic Ocean were quantified for BC using four different methods: chemothermal oxidation at 375 °C (CTO-375), pyrene fluorescence loss, thermal optical transmittance, and optical transmission attenuation. The highest BC concentrations were detected in the Caribbean Sea and off the African coast, with a regional average of 0.6 μg m−3 for both. The lowest average concentrations were measured off the coast of South America at 0.2 to 0.3 μg m−3. The thermally-based CTO-375 method generally detected lower BC concentrations than the other three methods. The ratio of soot-like BC, as defined by the CTO-375 method, relative to the broader BC combustion continuum, as defined by the pyrene fluorescence loss, was <1 for all regions except for the Caribbean, supporting that charcoal was an important fraction of the aerosol BC. Regions impacted by biomass burning emissions should utilize multiple methods to better apportion the BC concentrations and sources.


Sign in / Sign up

Export Citation Format

Share Document