scholarly journals What Drives Daily Precipitation Over Central Amazon? Differences Observed Between Wet and Dry Seasons

2020 ◽  
Author(s):  
Thiago S. Biscaro ◽  
Luiz A. T. Machado ◽  
Scott E. Giangrande ◽  
Michael P. Jensen

Abstract. This study suggests a new approach on how diurnal precipitation is modulated by the nighttime events developed over Central Amazon using data from the Observations and Modelling of the Green Ocean Amazon (GoAmazon 2014/5) field campaign in the Central Amazon as well as radar and satellite data. Local observations of cloud occurrences, soil temperature, surface fluxes, and planetary boundary layer characteristics are coupled with satellite data to identify physical mechanisms that control the diurnal rainfall in Amazonas during the wet and dry season. This is accomplished by evaluating the atmospheric properties during the nocturnal periods from the days prior to rainfall and non-raining events. Comparisons between non-rainy and rainy transitions are presented for the wet (January to April) and dry (June to September) seasons. The results suggest that wet season diurnal precipitation is modulated mainly by night-time cloud coverage and local effects such as turbulence, while dry season rain events are mainly controlled by large-meso scale circulation.

2011 ◽  
Vol 8 (5) ◽  
pp. 9283-9309 ◽  
Author(s):  
K. Jardine ◽  
A. Yañez Serrano ◽  
A. Arneth ◽  
L. Abrell ◽  
A. Jardine ◽  
...  

Abstract. Organic acids, central to terrestrial carbon metabolism and atmospheric photochemistry, are ubiquitous in the troposphere in the gas, particle, and aqueous phases. As the dominant organic acids in the atmosphere, formic acid (FA, HCOOH) and acetic acid (AA, CH3COOH) control precipitation acidity in remote regions and may represent a critical link between the terrestrial carbon and water cycles by acting as key intermediates in plant carbon and energy metabolism and aerosol-cloud-precipitation interactions. However, our understanding of the exchange of these acids between terrestrial ecosystems and the atmosphere is limited by a lack of field observations, the existence of biogenic and anthropogenic primary and secondary sources whose relative importance is unclear, and the fact that vegetation can act as both a source and a sink. Here, we first present data obtained from the tropical rainforest mesocosm at Biosphere 2 which isolates primary vegetation sources. Strong light and temperature dependent emissions enriched in FA relative to AA were simultaneously observed from individual branches (FA/AA = 2.1 ± 0.6) and mesocosm ambient air (FA/AA = 1.4 ± 0.3). We also present long-term observations of vertical concentration gradients of FA and AA within and above a primary rainforest canopy in the central Amazon during the 2010 dry and 2011 wet seasons. We observed a seasonal switch from net ecosystem-scale deposition during the dry season to net emissions during the wet season. This switch was associated with reduced ambient concentrations in the wet season (FA < 1.3 nmol mol−1, AA < 2.0 nmol mol−1) relative to the dry season (FA up to 3.3 nmol mol−1, AA up to 6.0 nmol mol−1), and a simultaneous increase in the FA/AA ambient concentration ratios from 0.3–0.8 in the dry season to 1.0–2.1 in the wet season. These observations are consistent with a switch between a biomass burning dominated source in the dry season (FA/AA < 1.0) to a vegetation dominated source in the wet season (FA/AA > 1.0). Our observations provide the first ecosystem-scale evidence of bidirectional FA and AA exchange between a forest canopy and the atmosphere controlled by ambient concentrations and ecosystem scale compensation points (estimated to be 1.3 nmol mol−1: FA, and 2.1 nmol mol−1: AA). These results suggest the need for a fundamental change in how future biosphere-atmosphere exchange models should treat FA and AA with a focus on factors that influence net exchange rates (ambient concentrations and ecosystem compensation points) rather than treating emissions and deposition separately.


2011 ◽  
Vol 8 (12) ◽  
pp. 3709-3720 ◽  
Author(s):  
K. Jardine ◽  
A. Yañez Serrano ◽  
A. Arneth ◽  
L. Abrell ◽  
A. Jardine ◽  
...  

Abstract. Organic acids, central to terrestrial carbon metabolism and atmospheric photochemistry, are ubiquitous in the troposphere in the gas, particle, and aqueous phases. As the dominant organic acids in the atmosphere, formic acid (FA, HCOOH) and acetic acid (AA, CH3COOH) control precipitation acidity in remote regions and may represent a critical link between the terrestrial carbon and water cycles by acting as key intermediates in plant carbon and energy metabolism and aerosol-cloud-precipitation interactions. However, our understanding of the exchange of these acids between terrestrial ecosystems and the atmosphere is limited by a lack of field observations, the existence of biogenic and anthropogenic primary and secondary sources whose relative importance is unclear, and the fact that vegetation can act as both a source and a sink. Here, we first present data obtained from the tropical rainforest mesocosm at Biosphere 2 which isolates primary vegetation sources. Strong light and temperature dependent emissions enriched in FA relative to AA were simultaneously observed from individual branches (FA/AA = 3.0 ± 0.7) and mesocosm ambient air (FA/AA = 1.4 ± 0.3). We also present long-term observations of vertical concentration gradients of FA and AA within and above a primary rainforest canopy in the central Amazon during the 2010 dry and 2011 wet seasons. We observed a seasonal switch from net ecosystem-scale deposition during the dry season to net emissions during the wet season. This switch was associated with reduced ambient concentrations in the wet season (FA < 1.3 nmol mol−1, AA < 2.0 nmol mol−1) relative to the dry season (FA up to 3.3 nmol mol−1, AA up to 6.0 nmol mol−1), and a simultaneous increase in the FA/AA ambient concentration ratios from 0.3–0.8 in the dry season to 1.0–2.1 in the wet season. These observations are consistent with a switch between a biomass burning dominated source in the dry season (FA/AA < 1.0) to a vegetation dominated source in the wet season (FA/AA > 1.0). Our observations provide the first ecosystem-scale evidence of bidirectional FA and AA exchange between a forest canopy and the atmosphere controlled by ambient concentrations and ecosystem scale compensation points (estimated to be 1.3 ± 0.3 nmol mol−1: FA, and 2.1 ± 0.4 nmol mol−1: AA). These results suggest the need for a fundamental change in how future biosphere-atmosphere exchange models should treat FA and AA with a focus on factors that influence net exchange rates (ambient concentrations and ecosystem compensation points) rather than treating emissions and deposition separately.


2018 ◽  
Vol 18 (17) ◽  
pp. 13245-13264 ◽  
Author(s):  
Daniela Wimmer ◽  
Stephany Buenrostro Mazon ◽  
Hanna Elina Manninen ◽  
Juha Kangasluoma ◽  
Alessandro Franchin ◽  
...  

Abstract. We investigated atmospheric new particle formation (NPF) in the Amazon rainforest using direct measurement methods. To our knowledge this is the first direct observation of NPF events in the Amazon region. However, previous observations elsewhere in Brazil showed the occurrence of nucleation-mode particles. Our measurements covered two field sites and both the wet and dry season. We measured the variability of air ion concentrations (0.8–12 nm) with an ion spectrometer between September 2011 and January 2014 at a rainforest site (T0t). Between February and October 2014, the same measurements were performed at a grassland pasture site (T3) as part of the GoAmazon 2014/5 experiment, with two intensive operating periods (IOP1 and IOP2 during the wet and the dry season, respectively). The GoAmazon 2014/5 experiment was designed to study the influence of anthropogenic emissions on the changing climate in the Amazon region. The experiment included basic aerosol and trace gas measurements at the ground, remote sensing instrumentation, and two aircraft-based measurements. The results presented in this work are from measurements performed at ground level at both sites. The site inside the rainforest (T0t) is located 60 km NNW of Manaus and influenced by pollution about once per week. The pasture (T3) site is located 70 km downwind from Manaus and influenced by the Manaus pollution plume typically once per day or every second day, especially in the afternoon. No NPF events were observed inside the rainforest (site T0t) at ground level during the measurement period. However, rain-induced ion and particle bursts (hereafter, “rain events”) occurred frequently (643 of 1031 days) at both sites during the wet and dry season, being most frequent during the wet season. During the rain events, the ion concentrations in three size ranges (0.8–2, 2–4, and 4–12 nm) increased up to about 104–105 cm−3. This effect was most pronounced in the intermediate and large size ranges, for which the background ion concentrations were about 10–15 cm−3 compared with 700 cm−3 for the cluster ion background. We observed eight NPF events at the pasture site during the wet season. We calculated the growth rates and formation rates of neutral particles and ions for the size ranges 2–3 and 3–7 nm using the ion spectrometer data. The observed median growth rates were 0.8 and 1.6 nm h−1 for 2–3 nm sized ions and particles, respectively, with larger growth rates (13.3 and 7.9 nm h−1) in the 3–7 nm size range. The measured nucleation rates were of the order of 0.2 cm−3 s−1 for particles and 4–9×10-3 cm−3 s−1 for ions. There was no clear difference in the sulfuric acid concentrations between the NPF event days and nonevent days (∼9×105 cm−3). The two major differences between the NPF days and nonevent days were a factor of 1.8 lower condensation sink on NPF event days (1.8×10-3 s−1) compared to nonevents (3.2×10-3 s−1) and different air mass origins. To our knowledge, this is the first time that results from ground-based sub-3 nm aerosol particle measurements have been obtained from the Amazon rainforest.


2004 ◽  
Vol 26 (2) ◽  
pp. 190 ◽  
Author(s):  
V. J. Neldner ◽  
A. B. Kirkwood ◽  
B. S. Collyer

The timing of vegetation sampling in highly seasonal environments is one of the critical factors in determining the proportion of the flora captured in a single sampling. Four sites were located within a 20 km radius of Mareeba, north Queensland and sampled every three months for three years. The sites were located in a variety of eucalypt communities and across an altitudinal range from 380 to 840 m above sea level. In these eucalypt communities experiencing highly seasonal rainfall typical of the tropical savannas, vegetation sampling in the early dry season (May) maximises the diversity of flora recorded. The ANOVA analysis showed a significant effect of month of sampling for the number of ground taxa recorded (P < 0.005). There was significant variation (P < 0.005) in species diversity between the sites but in all four study sites the May sampling recorded greater than 84% of the total recorded flora, whereas the November samplings accounted for between 21% and 56% of the flora. This supports the experience of other researchers that a May sampling is near optimum for sampling the ground layer floristic diversity in tropical eucalypt woodlands. Most vegetation survey and mapping data are of necessity collected at less than ideal times of the year due to access and resource issues. Care must be exercised in using data collected in the dry season, as only a limited proportion of the total ground flora is likely to be recorded. Studies designed to capture the full florisitic inventory of species present in these highly seasonal environments need to budget resources and plan to access these environments in the late wet season.


2021 ◽  
Author(s):  
Sinikka Paulus ◽  
Tarek S. El-Madany ◽  
René Orth ◽  
Anke Hildebrandt ◽  
Thomas Wutzler ◽  
...  

Abstract. The input of liquid water to terrestrial ecosystems is composed of rain and non-rainfall water input (NRWI). The latter comprises dew, fog, and adsorption of atmospheric vapor on soil particle surfaces. Although NRWIs can be relevant to support ecosystem functioning in seasonally dry ecosystems, they are understudied, being relatively small, and therefore hard to measure. In this study, we test a routine for analyzing lysimeter data specifically to determine NRWI. We apply it on one year of data from large high-precision weighing lysimeters at a semi-arid Mediterranean site and quantify that NRWIs occur for at least 3 h on 297 days (81 % of the year) with a mean diel duration of 6 hours. They reflect a pronounced seasonality as modulated by environmental conditions (i.e., temperature and net radiation). During the wet season, both dew and fog dominate NRWI, while during the dry season it is soil adsorption of atmospheric vapor. Although NRWI contributes only 7.4 % to the annual water input NRWI is the only water input to the ecosystem during 15 weeks, mainly in the dry season. Benefitting from the comprehensive set of measurements at the Majadas instrumental site, we show that our findings are in line with (i) independent model simulations forced with (near-) surface energy and moisture measurements and (ii) eddy covariance-derived latent heat flux estimates. This study shows that NRWI can be reliably quantified through high-resolution weighing lysimeters and a few additional measurements. Their main occurrence during night-time underlines the necessity to consider ecosystem water fluxes at high temporal resolution and with 24-hour coverage.


2020 ◽  
Vol 50 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Rayonil Gomes CARNEIRO ◽  
Gilberto FISCH ◽  
Camilla Kassar BORGES ◽  
Alice HENKES

ABSTRACT In this study, the erosion of the nocturnal boundary layer (NBL) was analyzed in the central Amazon during the dry season of 2014, using data from the GoAmazon 2014/5 Project and high-resolution model outputs (PArallelized Les Model - PALM). The dataset consisted of in situ (radiosonde) and remote sensing instruments measurements (Ceilometer, Lidar, Wind Profiler, microwave radiometer, and SODAR). The results showed that the NBL erosion occurred, on average, two hours after sunrise (06:00 local time), and the sensible heat flux provided more than 50% of the sensible heating necessary for the erosion process to occur. After the erosion, the convective phase developed quickly (175.2 m h-1). The measurements of the remote sensors showed that the Ceilometer, in general, presented satisfactory results in relation to the radiosondes for measuring the height of the planetary boundary layer. The PALM simulations represented well the NBL erosion, with a small underestimation (≈ 20 m) at the beginning of this phase. In the final phase of NBL erosion and in the initial stage of the development of the convective boundary layer (CBL), the model presented satisfactory results, with heights of CBL ranging from 800 m to 1,650 m, respectively.


2017 ◽  
Author(s):  
Thi Phuong Quynh Le ◽  
Cyril Marchand ◽  
Cuong Tu Ho ◽  
Thi Thuy Duong ◽  
Huong Thi Mai Nguyen ◽  
...  

Abstract. The Red River (Vietnam) is a good example of a South-East Asian river system, strongly affected by climate and human activities. This study aims to quantify the spatial and seasonal variability of carbon dynamic and CO2 outgassing at the water–air interface of the lower Red River system. The monitoring of water quality and CO2 emission were carried out for 24 h cyclings at the five stations during the dry and monsoon seasons. The riverine water pCO2 was supersaturated with CO2 in contrast to the atmospheric equilibrium (400 ppm), averaging about 1588.6 ± 884.6 ppm, thus resulting in a water–air CO2 flux of 26.9 ± 18.4 mmol m−2 day−1. The CO2 outgassing rate was characterized by significant spatial variations, highest at Hoa Binh station (Da River) due to the dam impoundment and the highest river flow. Surprisingly, CO2 outgassing was higher in the day time (30.4 ± 21.2 mmol m−2 day−1) than in the night time (23.3 ± 15.4 mmol m−2 day−1), probably as a result of the combined effect of higher wind speed and water temperature in the day time. Seasonal differences were also observed, higher in the wet season (30.7 ± 23.1 mmol m−2 day−1) than in the dry season (23.0 ± 12.2 mmol m−2 day−1), due to higher river discharges and higher external inputs of organic matters from watersheds. Conversely during dry season, temperature was among the main factors influencing C dynamic, with higher pCO2 and fluxes, probably as a result of increased metabolic rates.


2021 ◽  
Vol 6 (4) ◽  
pp. 1-6
Author(s):  
Sanyaolu Modupe Eunice

The radio refractive index structure of the lower section of the atmospheric boundary layer is critical in the planning and construction of microwave communication connections. This study analyses the refractivity profile carried out in Mowe (6.8085° N, 3.4367° E) South – Western Nigeria. Ground measurements of air pressure, temperature, and relative humidity used in this investigation were collected from the rain gauge of the Tropospheric Observatory Data Acquisition Network (TRODAN). The radio refractivity, associated refractivity gradient and climatic factor were computed using data from January 2012 to December 2013. The vertical distributions of radio refractivity were then calculated using these parameters. Seasonal fluctuations in refractivity are visible over the location, with high values in the wet season and low values in the dry season. The findings also suggest that propagation circumstances fluctuate in frequency, with sub-refractive situations being most common between April and September. This is an indication that microwave link in Mowe will suffer higher signal loss during wet season, while the loss may be mild during the dry season. The refractivity values in this study are expected to aid in determining the necessary mitigation to be put in place to reduce loss of signal in Mowe.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xue Zhu ◽  
Jiyue Qin ◽  
Chongyang Tan ◽  
Kang Ning

Abstract Background Most studies investigating human gut microbiome dynamics are conducted on humans living in an urban setting. However, few studies have researched the gut microbiome of the populations living traditional lifestyles. These understudied populations are arguably better subjects in answering human-gut microbiome evolution because of their lower exposure to antibiotics and higher dependence on natural resources. Hadza hunter-gatherers in Tanzania have exhibited high biodiversity and seasonal patterns in their gut microbiome composition at the family level, where some taxa disappear in one season and reappear later. Such seasonal changes have been profiled, but the nucleotide changes remain unexplored at the genome level. Thus, it is still elusive how microbial communities change with seasonal changes at the genome level. Results In this study, we performed a strain-level single nucleotide polymorphism (SNP) analysis on 40 Hadza fecal metagenome samples spanning three seasons. With more SNP presented in the wet season, eight prevalent species have significant SNP enrichment with the increasing number of SNP calling by VarScan2, among which only three species have relatively high abundances. Eighty-three genes have the most SNP distributions between the wet season and dry season. Many of these genes are derived from Ruminococcus obeum, and mainly participated in metabolic pathways including carbon metabolism, pyruvate metabolism, and glycolysis. Conclusions Eight prevalent species have significant SNP enrichments with the increasing number of SNP, among which only Eubacterium biforme, Eubacterium hallii and Ruminococcus obeum have relatively high species abundances. Many genes in the microbiomes also presented characteristic SNP distributions between the wet season and the dry season. This implies that the seasonal changes might indirectly impact the mutation patterns for specific species and functions for the gut microbiome of the population that lives in traditional lifestyles through changing the diet in wet and dry seasons, indicating the role of these variants in these species’ adaptation to the changing environment and diets.


Diversity ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 319
Author(s):  
Cristian Pérez-Granados ◽  
Karl-L. Schuchmann

Climatic conditions represent one of the main constraints that influence avian calling behavior. Here, we monitored the daily calling activity of the Undulated Tinamou (Crypturellus undulatus) and the Chaco Chachalaca (Ortalis canicollis) during the dry and wet seasons in the Brazilian Pantanal. We aimed to assess the effects of climate predictors on the vocal activity of these focal species and evaluate whether these effects may vary among seasons. Air temperature was positively associated with the daily calling activity of both species during the dry season. However, the vocal activity of both species was unrelated to air temperature during the wet season, when higher temperatures occur. Daily rainfall was positively related to the daily calling activity of both species during the dry season, when rainfall events are scarce and seem to act as a trigger for breeding phenology of the focal species. Nonetheless, air temperature was negatively associated with the daily calling activity of the Undulated Tinamou during the wet season, when rainfall was abundant. This study improves our understanding of the vocal behavior of tropical birds and their relationships with climate, but further research is needed to elucidate the mechanisms behind the associations found in our study.


Sign in / Sign up

Export Citation Format

Share Document