scholarly journals The influence of multiple groups of biological ice nucleating particles on microphysical properties of mixed-phase clouds observed during MC3E

2022 ◽  
Author(s):  
Sachin Patade ◽  
Vaughan Phillips ◽  
Deepak Waman ◽  
Akash Deshmukh ◽  
Ashok Kumar Gupta ◽  
...  

Abstract. A new empirical parameterization (EP) for multiple groups of primary biological aerosol particles (PBAPs) is implemented in the aerosol cloud model (AC) to investigate their roles as ice-nucleating particles (INPs). The EP describes the heterogeneous ice nucleation by (1) fungal spores, (2) bacteria, (3) pollen, (4) detritus of plants, animals, and viruses, and (5) algae. Each group includes fragments from the originally emitted particles. A high-resolution simulation of a midlatitude mesoscale squall line by AC is validated against airborne and ground observations. Sensitivity tests are carried out by varying the initial vertical profiles of the loadings of individual PBAP groups. The resulting changes in warm and ice microphysical parameters are investigated. Overall, PBAPs have little effect on the ice phase, especially in the convective region. In the stratiform region, increasing the initial PBAP loadings by a factor of 100 resulted in less than 60 % change in ice number concentrations. The total ice concentration is mostly controlled by various mechanisms of secondary ice production (SIP). However, when SIP is artificially prohibited in sensitivity tests, increasing the PBAP loading by a factor of 100 has no significant effect on the ice phase. Further sensitivity tests revealed that PBAPs have little effect on surface precipitation as well as on shortwave and longwave flux.

2016 ◽  
Vol 73 (3) ◽  
pp. 975-995 ◽  
Author(s):  
J. A. Milbrandt ◽  
H. Morrison

Abstract The predicted particle properties (P3) scheme introduced in Part I of this series represents all ice hydrometeors using a single “free” category, in which the bulk properties evolve smoothly through changes in the prognostic variables, allowing for the representation of any type of ice particle. In this study, P3 has been expanded to include multiple free ice-phase categories allowing particle populations with different sets of bulk properties to coexist, thereby reducing the detrimental effects of property dilution. The modified version of P3 is the first scheme to parameterize ice-phase microphysics using multiple free categories. The multicategory P3 scheme is described and its overall behavior is illustrated. It is shown using an idealized 1D kinematic model that the overall simulation of total ice mass, reflectivity, and surface precipitation converges with additional categories. The correct treatment of the rime splintering process, which promotes multiple ice modes, is shown to require at least two categories in order to be included without introducing problems associated with property dilution. Squall-line simulations using a 3D dynamical model with one, two, and three ice categories produce reasonable reflectivity structures and precipitation rates compared to radar observations. In the multicategory simulations, ice hydrometeors from different categories and with different bulk properties are shown to coexist at the same points, with effects on reflectivity structure and precipitation. The new scheme thus appears to work reasonably in a full 3D model and is ready to be tested more widely for research and operational applications.


1991 ◽  
Vol 30 (7) ◽  
pp. 985-1004 ◽  
Author(s):  
Michale McCumber ◽  
Wei-Kuo Tao ◽  
Joanne Simpson ◽  
Richard Penc ◽  
Su-Tzai Soong

Abstract A numerical cloud model is used to evaluate the performance of several ice parameterizations. Results from simulations using these schemes are contrasted with each other, with an ice-free control simulation, and with observations to determine to what extent ice physics affect the realism of these results. Two different types of tropical convection are simulated. Tropical squall-type systems are simulated in two dimensions so that a large domain can be used to incorporate a complete anvil. Nonsquall-type convective lines are simulated in three dimensions owing to their smaller horizontal scale. The inclusion of ice processes enhances the agreement of the simulated convection with some features of observed convection, including the proportion of surface rainfall in the anvil region, and the intensity and structure of the radar brightband near the melting level in the anvil. In the context of our experimental design, the use of three ice classes produces better results than two ice classes or ice-free conditions, and for the tropical cumuli, the optimal mix of the bulk ice hydrometeors is cloud ice-snow-graupel. We infer from our modeling results that application of bulk ice microphysics in cloud models might be case specific, which is a significant limitation. This can have serious ramifications for microwave interpretation of cloud microphysical properties. Generalization of ice processes may require a larger number of ice categories than we have evaluated and/or the prediction of hydrometeor concentrations or particle-size spectra.


2018 ◽  
Vol 18 (20) ◽  
pp. 15437-15450 ◽  
Author(s):  
Matthias Hummel ◽  
Corinna Hoose ◽  
Bernhard Pummer ◽  
Caroline Schaupp ◽  
Janine Fröhlich-Nowoisky ◽  
...  

Abstract. Primary ice formation, which is an important process for mixed-phase clouds with an impact on their lifetime, radiative balance, and hence the climate, strongly depends on the availability of ice-nucleating particles (INPs). Supercooled droplets within these clouds remain liquid until an INP immersed in or colliding with the droplet reaches its activation temperature. Only a few aerosol particles are acting as INPs and the freezing efficiency varies among them. Thus, the fraction of supercooled water in the cloud depends on the specific properties and concentrations of the INPs. Primary biological aerosol particles (PBAPs) have been identified as very efficient INPs at high subzero temperatures, but their very low atmospheric concentrations make it difficult to quantify their impact on clouds. Here we use the regional atmospheric model COSMO–ART to simulate the heterogeneous ice nucleation by PBAPs during a 1-week case study on a domain covering Europe. We focus on three highly ice-nucleation-active PBAP species, Pseudomonas syringae bacteria cells and spores from the fungi Cladosporium sp. and Mortierella alpina. PBAP emissions are parameterized in order to represent the entirety of bacteria and fungal spores in the atmosphere. Thus, only parts of the simulated PBAPs are assumed to act as INPs. The ice nucleation parameterizations are specific for the three selected species and are based on a deterministic approach. The PBAP concentrations simulated in this study are within the range of previously reported results from other modeling studies and atmospheric measurements. Two regimes of PBAP INP concentrations are identified: a temperature-limited and a PBAP-limited regime, which occur at temperatures above and below a maximal concentration at around −10 ∘C, respectively. In an ensemble of control and disturbed simulations, the change in the average ice crystal concentration by biological INPs is not statistically significant, suggesting that PBAPs have no significant influence on the average state of the cloud ice phase. However, if the cloud top temperature is below −15 ∘C, PBAP can influence the cloud ice phase and produce ice crystals in the absence of other INPs. Nevertheless, the number of produced ice crystals is very low and it has no influence on the modeled number of cloud droplets and hence the cloud structure.


2010 ◽  
Vol 10 (10) ◽  
pp. 23449-23495 ◽  
Author(s):  
I.-J. Choi ◽  
T. Iguchi ◽  
S.-W. Kim ◽  
S.-C. Yoon ◽  
T. Nakajima

Abstract. A bin-based meso-scale cloud model has been employed to explore the aerosol influence on the cloud microphysical properties and precipitation efficiency of shallow stratocumulus in East Asia in March 2005. We newly constructed aerosol size distributions and hygroscopicity parameters for five aerosol species that reproduced observed aerosol and cloud condensation nuclei (CCN) number concentrations in the target period, and thereby used in model simulation of the cloud microphysical properties and precipitation efficiency. It is found that the simulated results were satisfactorily close to the satellite-based observation. Significant effects of aerosols as well as of the meteorological condition were found in the simulated cloud properties and precipitation as confirmed by comparing maritime and polluted aerosol cases and by a sensitivity test with interchanging the aerosol conditions for two cases. Cloud droplets in the polluted condition tended to exhibit relatively narrower cloud drop spectral widths with a bias toward smaller droplet sizes than those in maritime condition, supporting the dispersion effect. The polluted aerosol condition also had a tendency of thinner and higher cloud layers than maritime aerosol condition under relatively humid meteorological condition, possibly due to enhanced updraft. In our cases, vertical structures of cloud droplet number and size were affected predominantly by the change in aerosol conditions, whereas in the structures of liquid water content and cloud fraction were influenced by both meteorological and aerosol conditions. Aerosol change made little differences in cloud liquid water, vertical cloud structure, and updraft/downdraft velocities between the maritime and polluted conditions under dry atmospheric condition. Quantitative evaluations of the sensitivity factor between aerosol and cloud parameters revealed a large sensitivity values in the target area compared to the previously reported values, indicating the strong aerosol-cloud interaction.


2009 ◽  
Vol 9 (3) ◽  
pp. 11589-11658 ◽  
Author(s):  
B. Kärcher ◽  
U. Burkhardt ◽  
S. Unterstrasser ◽  
P. Minnis

Abstract. Aircraft contrails develop into contrail cirrus by depositional growth and sedimentation of ice particles and horizontal spreading due to wind shear. Factors controlling this development include temperature, ice supersaturation, thickness of ice-supersaturated layers, and vertical gradients in the horizontal wind field. An analytical microphysical cloud model is presented and validated that captures these processes. Many individual contrail cirrus are simulated that develop differently owing to the variability in the controlling factors, resulting in large samples of cloud properties that are statistically analyzed. Contrail cirrus development is studied over the first four hours past formation, similar to the ages of contrails that were tracked in satellite imagery on regional scales. On these time scales, contrail cirrus optical depth and microphysical variables exhibit a marked variability, expressed in terms of broad and skewed probability distribution functions. Typical simulated mean optical depths at a wavelength of 0.55 μm are in the range 0.2–0.3. A substantial fraction 20–40% of contrail cirrus stay subvisible (optical depth <0.02). A detailed analysis suggests that previous satellite measurements of line-shaped persistent contrails have missed about 86% (35%) of contrails with optical depth ≤0.05 (0.05–0.1), amounting to almost 50% of contrails of all optical depths. When comparing observations with simulations and when estimating the contrail cirrus climate impact, not only mean values but also the variability in optical depth and microphysical properties need to be considered.


2018 ◽  
Vol 146 (7) ◽  
pp. 2003-2022 ◽  
Author(s):  
S. Ch. Keppas ◽  
J. Crosier ◽  
T. W. Choularton ◽  
K. N. Bower

Abstract On 21 January 2009, the warm front of an extensive low pressure system affected U.K. weather. In this work, macroscopic and microphysical characteristics of this warm front are investigated using in situ (optical array probes, temperatures sensors, and radiosondes) and S-band polarimetric radar data from the Aerosol Properties, Processes and Influences on the Earth’s Climate–Clouds project. The warm front was associated with a warm conveyor belt, a zone of wind speeds of up to 26 m s−1, which played a key role in the formation of extensive mixed-phase cloud mass by ascending significant liquid water (LWC; ~0.22 g m−3) at a level ~3 km and creating an ideal environment at temperatures ~ −5°C for ice multiplication. Then, “generating cells,” which formed in the unstable and sheared layer above the warm conveyor belt, influenced the structure of the stratiform cloud layer, dividing it into two types of elongated and slanted ice fall streaks: one depicted by large ZDR values and the other by large ZH values. The different polarimetric characteristics of these ice fall streaks reveal their different microphysical properties, such as the ice habit, concentration, and size. We investigate their evolution, which was affected by the warm conveyor belt, and their impact on the surface precipitation.


2018 ◽  
Vol 18 (22) ◽  
pp. 16461-16480 ◽  
Author(s):  
Sylvia C. Sullivan ◽  
Christian Barthlott ◽  
Jonathan Crosier ◽  
Ilya Zhukov ◽  
Athanasios Nenes ◽  
...  

Abstract. Secondary ice production via processes like rime splintering, frozen droplet shattering, and breakup upon ice hydrometeor collision have been proposed to explain discrepancies between in-cloud ice crystal and ice-nucleating particle numbers. To understand the impact of this additional ice crystal generation on surface precipitation, we present one of the first studies to implement frozen droplet shattering and ice–ice collisional breakup parameterizations in a mesoscale model. We simulate a cold frontal rainband from the Aerosol Properties, PRocesses, And InfluenceS on the Earth's Climate campaign and investigate the impact of the new parameterizations on the simulated ice crystal number concentrations (ICNC) and precipitation. Near the convective regions of the rainband, contributions to ICNC can be as large from secondary production as from primary nucleation, but ICNCs greater than 50 L−1 remain underestimated by the model. The addition of the secondary production parameterizations also clearly intensifies the differences in both accumulated precipitation and precipitation rate between the convective towers and non-convective gap regions. We suggest, then, that secondary ice production parameterizations be included in large-scale models on the basis of large hydrometeor concentration and convective activity criteria.


2009 ◽  
Vol 66 (1) ◽  
pp. 3-21 ◽  
Author(s):  
Xiaowen Li ◽  
Wei-Kuo Tao ◽  
Alexander P. Khain ◽  
Joanne Simpson ◽  
Daniel E. Johnson

Abstract A two-dimensional cloud-resolving model is used to study the sensitivities of two microphysical schemes, a bulk scheme and an explicit spectral bin scheme, in simulating a midlatitude summertime squall line [Preliminary Regional Experiment for Storm-Scale Operational and Research Meteorology (PRE-STORM), 10–11 June 1985]. In this first part of a two-part paper, the developing and mature stages of simulated storms are compared in detail. Some variables observed during the field campaign are also presented for validation. It is found that both schemes agree well with each other, and also with published observations and retrievals, in terms of storm structures and evolution, average storm flow patterns, pressure and temperature perturbations, and total heating profiles. The bin scheme is able to produce a much more extensive and homogeneous stratiform region, which compares better with observations. However, instantaneous fields and high temporal resolution analyses show distinct characteristics in the two simulations. During the mature stage, the bulk simulation produces a multicell storm with convective cells embedded in its stratiform region. Its leading convection also shows a distinct life cycle (strong evolution). In contrast, the bin simulation produces a unicell storm with little temporal variation in its leading cell regeneration (weak evolution). More detailed, high-resolution observations are needed to validate and, perhaps, generalize these model results. Interactions between the cloud microphysics and storm dynamics that produce the sensitivities described here are discussed in detail in Part II of this paper.


2014 ◽  
Vol 142 (12) ◽  
pp. 4791-4822 ◽  
Author(s):  
Adam J. French ◽  
Matthew D. Parker

Abstract Output from idealized numerical simulations is used to investigate the storm-scale processes responsible for squall-line evolution following a merger with an isolated supercell. A simulation including a squall line–supercell merger is compared to one using the same initial squall line and background environment without the merger. These simulations reveal that while bow echo formation is favored by the strongly sheared background environment, the merger produces a more compact bowing structure owing to a locally enhanced rear-inflow jet. The merger also represents a favored location for severe weather production relative to other portions of the squall line, with surface winds, vertical vorticity, and rainfall all being maximized in the vicinity of the merger. An analysis of storm-scale processes reveals that the premerger squall line weakens as it encounters outflow from the preline supercell, and the supercell becomes the leading edge of the merged system. Subsequent localized strengthening of the cold pool and rear-inflow jet produce a compact, intense bow echo local to the merger, with a descending rear-inflow jet creating a broad swath of damaging surface winds. These features, common to severe bow echoes, are shown to be a direct result of the merger in the present simulations, and are diminished or absent in the no-merger simulation. Sensitivity tests reveal that mergers in a weaker vertical wind shear environment do not produce an enhanced bow echo structure, and only produce a localized region of marginally enhanced surface winds. Additional tests demonstrate that the details of postmerger evolution vary with merger location along the line.


Sign in / Sign up

Export Citation Format

Share Document