scholarly journals Variability of aerosol properties over Eastern Europe observed from ground and satellites in the period from 2003 to 2011

2013 ◽  
Vol 13 (1) ◽  
pp. 2641-2670
Author(s):  
A. Bovchaliuk ◽  
G. Milinevsky ◽  
V. Danylevsky ◽  
P. Goloub ◽  
O. Dubovik ◽  
...  

Abstract. The paper presents the study of aerosol variability in the period from 2003 to 2011 over Eastern Europe region with latitude ranging from 40° N to 60° N and longitude from 20° E to 50° E. The analysis was based on the POLDER/PARASOL and POLDER-2/ADEOS satellites and AERONET ground-based sunphotometer observations. The aerosol optical thickness (AOT) of the studied area is characterized by the values (referenced to 870 nm wavelength) ranging from 0.05 to 0.2 except the period of July–August 2010 with strong forest and peat wildfires when the AOT typical values range from 0.3 to 0.5. The analysis of seasonal dynamics of aerosol loading has revealed two AOT high value peaks. The first peak observed in April–May is the result of solitary transportation of Sahara dust in the atmosphere over Eastern Europe, infrequent agricultural fires, transportation of sea salt aerosols by southern winds to Ukraine and Moldova from the Black and Azov Seas. The second peak in August–September is associated with forest and peat wildfires, considerable transportation of Sahara dust and presence of soil dust aerosols due to harvesting activity. The maximum values of AOT are observed in May 2006 (0.1–0.15), April 2009 (0.07–0.15) and August 2010 (0.2–0.5). Furthermore, the study has identified a distinct pattern of anthropogenic aerosols over the industrial areas, especially in the central Ukraine, eastern Belarus, as well as Moscow, Nizhny Novgorod and Stavropol regions in Russia. The comparison of the fine mode AOT (particle radius < 0.3 μm) derived by standard algorithm POLDER/PARASOL from reflected polarized radiances with those recomputed from AERONET inversions was performed over a number of AERONET sites: over Kyiv and Sevastopol sites for the period of 2008–2009 and over Moscow, Minsk, Belsk, and Moldova sites for the period of 2005–2009. The correlation coefficients are 0.78 for Moscow, 0.76 – Minsk, 0.86 – Belsk, 0.93 – Kyiv, 0.81 – Moldova and 0.63 for Sevastopol sites. The deviations are explained by the spatial inhomogeneity of the surface polarization that has stronger effect on aerosol retrieval for clear atmospheric conditions with low aerosol loading when surface impact on satellite observations is more pronounced. In addition, the preliminary analysis of the detailed aerosol properties derived by new generation PARASOL algorithm was accomplished. The AOT and single scattering albedo retrieved by the algorithm over Kyiv were compared with the closest AERONET retrievals within two hour of satellite overpass time and the stable atmospheric conditions.

2013 ◽  
Vol 13 (13) ◽  
pp. 6587-6602 ◽  
Author(s):  
A. Bovchaliuk ◽  
G. Milinevsky ◽  
V. Danylevsky ◽  
P. Goloub ◽  
O. Dubovik ◽  
...  

Abstract. The paper presents some results of the study on aerosol variability in the period from 2003 to 2011 over the Eastern Europe region, with latitude ranging from 40° N to 60° N and longitude from 20° E to 50° E. The analysis was based on the POLDER/PARASOL and POLDER-2/ADEOS satellites and AERONET (AErosol RObotic NETwork) ground-based sun photometer observations. The aerosol optical thickness (AOT) of the studied area is characterized by values (referenced to 870 nm wavelength) ranging from 0.05 to 0.2, except for in the period of July–August 2010 with strong forest and peat wildfires when the AOT typical values range from 0.3 to 0.5 according to both retrievals. The analysis of seasonal dynamics of aerosol loading has revealed two AOT high value peaks. The spring peak observed in April–May is the result of solitary transportation of Saharan dust in the atmosphere over Eastern Europe, infrequent agricultural fires, transportation of sea salt aerosols by southern winds to Ukraine and Moldova from the Black and Azov seas. The autumn peak in August–September is associated with forest and peat wildfires, considerable transportation of Saharan dust and the presence of soil dust aerosols due to harvesting activity. The maximum values of AOT are observed in May 2006 (0.1–0.15), April 2009 (0.07–0.15) and August 2010 (0.2–0.5). Furthermore, the study has identified a distinct pattern of anthropogenic aerosols over the industrial areas, especially in central Ukraine and eastern Belarus as well as Moscow region in Russia. The comparison of the AOT derived by standard algorithm POLDER/PARASOL with those recomputed from AERONET inversions for fine mode particles with radius < 0.3 μm was performed over several AERONET sites. The correlation coefficients for the POLDER/AERONET AOT retrieval comparisons are equal: 0.78 for Moscow site, 0.76 – Minsk, 0.86 – Belsk, 0.81 – Moldova (period 2005–2009), 0.93 – Kyiv and 0.63 for Sevastopol sites (2008–2009). The deviations are explained by the spatial inhomogeneity of the surface polarization that has a stronger effect on aerosol retrieval for clear atmospheric conditions with low aerosol loading when surface impact on satellite observations is more pronounced. In addition, the preliminary analysis of the detailed aerosol properties derived by a new generation PARASOL algorithm was evaluated. The comparison of AOT and single scattering albedo retrieved from the POLDER/PARASOL observations over Kyiv with the closest AERONET retrievals within 30 min of satellite overpass time and with a cloudless day shows acceptable agreement of the aerosol dynamics. The correspondence of those data is observed even for extreme AOT440 value 1.14, which was caused by the forest and peat fires in August 2010.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hua Xu ◽  
Zhengqiang Li ◽  
Donghui Li ◽  
Li Li ◽  
Xingfeng Chen ◽  
...  

One-year observation of dust aerosol properties near Hexi Corridor was obtained from polarimetric measurements by ground-based sunphotometer in the county of Minqin in northwestern China from March 2012 to February 2013. We observed an annual mean AOD of0.22±0.22at 0.50 μm and Ångström exponents of 0.1–1.0 fitting a bimode normal distribution centered at 0.18 and 0.50, respectively. The effective radii of fine (0.13–0.17 μm) and coarse (2.49–3.49 μm) modes were found stable at all seasons together with the appearance of a third mode of particle radius at 0.4–1.0 μm when AOD was larger than 0.6. It is noticeable that the real (1.5–1.7) and imaginary (0.0005 to 0.09) parts of complex refractive indices were higher than other studies performed in other desert regions of China, while single scattering albedo was relatively lower (~0.84–0.89) at wavelengths of 0.44, 0.67, 0.87, and 1.02 μm. This is partially due to calcite or hematite in the soil in Minqin or the influence of anthropogenic aerosols containing carbon. Moreover, from our novel polarimetric measurement, the scattering phase function (F11) and degree of linear polarization for incident unpolarized light (-F12/F11) of dust aerosols were also obtained within this deserted area.


2016 ◽  
Author(s):  
Ilissa B. Ocko ◽  
Paul A. Ginoux

Abstract. Anthropogenic aerosols are a key factor governing Earth’s climate, and play a central role in human-caused climate change. However, because of aerosols’ complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from collocated instruments. We compare optical depth (total, scattering, and absorption), single scattering albedo, Ångström exponent, and extinction vertical profiles in two prominent global climate models to seasonal observations from collocated instruments (AERONET and CALIOP) at seven polluted and biomass burning regions worldwide. We find that models may accurately reproduce one variable while totally failing at another; data from collocated instruments can reveal underlying aerosol-governing physics; column properties may wash out important vertical distinctions; and "improved" models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.


2020 ◽  
Author(s):  
Anin Puthukkudy ◽  
J. Vanderlei Martins ◽  
Lorraine A. Remer ◽  
Xiaoguang Xu ◽  
Oleg Dubovik ◽  
...  

Abstract. Multi-angle polarimetric (MAP) imaging of Earth scenes can be used for the retrieval of microphysical and optical parameters of aerosols and clouds. The Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) is an aircraft MAP instrument with the hyper-angular imaging capability of 60 along-track viewing angles at 670 nm, and 20 along-track viewing angles at other wavelengths 440, 550, 870 nm across the full 114° (94°) along-track (cross-track) field-of-view. Here we report the retrieval of aerosol properties using the Generalized Retrieval of Aerosols and Surface Properties (GRASP) algorithm applied to AirHARP observations collected during the NASA Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign in October–November 2017. The retrieved aerosol properties include spherical fraction (SF), aerosol volume concentration in multiple size distribution modes, and with sufficient aerosol loading, complex aerosol refractive index. From these primary retrievals, we derive aerosol optical depth (AOD), Angstrom exponent (AE), and single scattering albedo (SSA). AOD retrieved from AirHARP measurements are compared with the High Spectral Resolution LiDAR-2 (HSRL2) AOD measurements at 532 nm and validated with measurements from collocated Aerosol Robotic NETwork (AERONET) stations. A good correlation with HSRL2 (𝜌 = 0.940, |𝐵𝐼𝐴𝑆| = 0.062) and AERONET AOD (0.013 ≤ Mean Absolute Error (𝑀𝐴𝐸) ≤ 0.017, 0.013 ≤ |𝐵𝐼𝐴𝑆| ≤ 0.017) measurements is observed for the collocated points. Forest fire smoke intercepted during ACEPOL provided a situation with sufficient aerosol loading to retrieve the real part of the refractive index (RRI) of 1.55 and the imaginary part of the refractive index (IRI) of 0.024 The derived SSAs for this case are 0.87, 0.86, 0.84, 0.81 at wavelengths of 440 nm, 550 nm, 670 nm, and 870 nm, respectively. Finer particles with an average AE of 1.53, volume median radius of 0.157 µm and standard deviation of 0.55 µm for fine mode is observed for the same smoke plume. These results serve as a proxy for the scale and detail of aerosol retrievals that are anticipated from future space mission data, as :HARP CubeSat (mission begins 2020) and HARP2 (aboard the NASA PACE mission with launch in 2023) are near duplicates of AirHARP and are expected to provide the same level of aerosol characterization.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 523
Author(s):  
Jacques Piazzola ◽  
William Bruch ◽  
Christelle Desnues ◽  
Philippe Parent ◽  
Christophe Yohia ◽  
...  

Human behaviors probably represent the most important causes of the SARS-Cov-2 virus propagation. However, the role of virus transport by aerosols—and therefore the influence of atmospheric conditions (temperature, humidity, type and concentration of aerosols)—on the spread of the epidemic remains an open and still debated question. This work aims to study whether or not the meteorological conditions related to the different aerosol properties in continental and coastal urbanized areas might influence the atmospheric transport of the SARS-Cov-2 virus. Our analysis focuses on the lockdown period to reduce the differences in the social behavior and highlight those of the weather conditions. As an example, we investigated the contamination cases during March 2020 in two specific French areas located in both continental and coastal areas with regard to the meteorological conditions and the corresponding aerosol properties, the optical depth (AOD) and the Angstrom exponent provided by the AERONET network. The results show that the analysis of aerosol ground-based data can be of interest to assess a virus survey. We found that moderate to strong onshore winds occurring in coastal regions and inducing humid environment and large sea-spray production episodes coincides with smaller COVID-19 contamination rates. We assume that the coagulation of SARS-Cov-2 viral particles with hygroscopic salty sea-spray aerosols might tend to inhibit its viral infectivity via possible reaction with NaCl, especially in high relative humidity environments typical of maritime sites.


2017 ◽  
Vol 17 (7) ◽  
pp. 4451-4475 ◽  
Author(s):  
Ilissa B. Ocko ◽  
Paul A. Ginoux

Abstract. Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud–Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.


2015 ◽  
Vol 8 (6) ◽  
pp. 2625-2638 ◽  
Author(s):  
L. Wu ◽  
O. Hasekamp ◽  
B. van Diedenhoven ◽  
B. Cairns

Abstract. We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Subin Jose ◽  
Vijayakumar S. Nair ◽  
S. Suresh Babu

Abstract Atmospheric aerosols play an important role in the formation of warm clouds by acting as efficient cloud condensation nuclei (CCN) and their interactions are believed to cool the Earth-Atmosphere system (‘first indirect effect or Twomey effect’) in a highly uncertain manner compared to the other forcing agents. Here we demonstrate using long-term (2003–2016) satellite observations (NASA’s A-train satellite constellations) over the northern Indian Ocean, that enhanced aerosol loading (due to anthropogenic emissions) can reverse the first indirect effect significantly. In contrast to Twomey effect, a statistically significant increase in cloud effective radius (CER, µm) is observed with respect to an increase in aerosol loading for clouds having low liquid water path (LWP < 75 g m−2) and drier cloud tops. Probable physical mechanisms for this effect are the intense competition for available water vapour due to higher concentrations of anthropogenic aerosols and entrainment of dry air on cloud tops. For such clouds, cloud water content showed a negative response to cloud droplet number concentrations and the estimated intrinsic radiative effect suggest a warming at the Top of the Atmosphere. Although uncertainties exist in quantifying aerosol-cloud interactions (ACI) using satellite observations, present study indicates the physical existence of anti-Twomey effect over the northern Indian Ocean during south Asian outflow.


2012 ◽  
Vol 12 (2) ◽  
pp. 5487-5517 ◽  
Author(s):  
G. M. Kelly ◽  
B. F. Taubman ◽  
L. B. Perry ◽  
J. P. Sherman ◽  
P. T. Soulé ◽  
...  

Abstract. There are many uncertainties associated with aerosol-precipitation interactions, particularly in mountain regions where a variety of processes at different spatial scales influence precipitation patterns. Aerosol-precipitation linkages were examined in the southern Appalachian Mountains, guided by the following research questions: (1) how do aerosol properties observed during precipitation events vary by season (e.g., summer vs. winter) and synoptic event type (e.g., frontal vs. non-frontal); and (2) what influence does air mass source region have on aerosol properties? Precipitation events were identified based on regional precipitation data and classified using a synoptic classification scheme developed for this study. Hourly aerosol data were collected at the Appalachian Atmospheric Interdisciplinary Research (AppalAIR) facility at Appalachian State University in Boone, NC (1110 m a.s.l., 36.215°, −81.680°). Backward air trajectories provided information on upstream atmospheric characteristics and source regions. During the warm season (June to September), greater aerosol loading dominated by larger particles was observed, while cool season (November to April) precipitation events exhibited overall lower aerosol loading with an apparent influence from biomass burning particles. Aerosol-induced precipitation enhancement may have been detected in each season, particularly during warm season non-frontal precipitation.


2017 ◽  
Author(s):  
Cristian Velasco-Merino ◽  
David Mateos ◽  
Carlos Toledano ◽  
Joseph M. Prospero ◽  
Jack Molinie ◽  
...  

Abstract. Mineral dust aerosol can be a major driver of aerosol climatology in regions distant from the sources. This study addresses the change of columnar aerosol properties when mineral dust arrives to the Caribbean Basin after transport from Africa over the Atlantic Ocean. We use data from NASA Aerosol Robotic Network (AERONET) sites in five Caribbean and two West African sites to characterize changes in aerosol properties: aerosol optical depth, size distribution, single scattering albedo, and refractive indexes. After obtaining local aerosol climatology in each area, the air mass connections between West Africa and Caribbean Basin have been investigated by means of air mass back trajectories. Over the period 1996–2014 we identify 3174 connection days, on average, 167 connection days per year. Among these, 1162 pairs of data present aerosol data in Caribbean sites with corresponding aerosol observations in Western Africa sites ~5–7 days before. Of these 1162 days, 484 meet the criteria to be characterized as mineral dust outbreaks. Based on these days we observe the following changes in aerosol-related properties in transiting the Atlantic: AOD decreases about 0.16 or −30 %; the volume particle size distribution shape shows no changes; single scattering albedo, refractive indexes, and asymmetry factor remain unchanged; the difference in the effective radius in West African area with respect to Caribbean Basin is between 0 and +0.3 µm; and half of the analyzed cases present predominance of non-spherical particles in both areas.


Sign in / Sign up

Export Citation Format

Share Document