anthropogenic emissions
Recently Published Documents


TOTAL DOCUMENTS

781
(FIVE YEARS 295)

H-INDEX

60
(FIVE YEARS 13)

2022 ◽  
Vol 22 (1) ◽  
pp. 395-418
Author(s):  
Xiao Lu ◽  
Daniel J. Jacob ◽  
Haolin Wang ◽  
Joannes D. Maasakkers ◽  
Yuzhong Zhang ◽  
...  

Abstract. We quantify methane emissions and their 2010–2017 trends by sector in the contiguous United States (CONUS), Canada, and Mexico by inverse analysis of in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) atmospheric methane observations. The inversion uses as a prior estimate the national anthropogenic emission inventories for the three countries reported by the US Environmental Protection Agency (EPA), Environment and Climate Change Canada (ECCC), and the Instituto Nacional de Ecología y Cambio Climático (INECC) in Mexico to the United Nations Framework Convention on Climate Change (UNFCCC) and thus serves as an evaluation of these inventories in terms of their magnitudes and trends. Emissions are optimized with a Gaussian mixture model (GMM) at 0.5∘×0.625∘ resolution and for individual years. Optimization is done analytically using lognormal error forms. This yields closed-form statistics of error covariances and information content on the posterior (optimized) estimates, allows better representation of the high tail of the emission distribution, and enables construction of a large ensemble of inverse solutions using different observations and assumptions. We find that GOSAT and in situ observations are largely consistent and complementary in the optimization of methane emissions for North America. Mean 2010–2017 anthropogenic emissions from our base GOSAT + in situ inversion, with ranges from the inversion ensemble, are 36.9 (32.5–37.8) Tg a−1 for CONUS, 5.3 (3.6–5.7) Tg a−1 for Canada, and 6.0 (4.7–6.1) Tg a−1 for Mexico. These are higher than the most recent reported national inventories of 26.0 Tg a−1 for the US (EPA), 4.0 Tg a−1 for Canada (ECCC), and 5.0 Tg a−1 for Mexico (INECC). The correction in all three countries is largely driven by a factor of 2 underestimate in emissions from the oil sector with major contributions from the south-central US, western Canada, and southeastern Mexico. Total CONUS anthropogenic emissions in our inversion peak in 2014, in contrast to the EPA report of a steady decreasing trend over 2010–2017. This reflects offsetting effects of increasing emissions from the oil and landfill sectors, decreasing emissions from the gas sector, and flat emissions from the livestock and coal sectors. We find decreasing trends in Canadian and Mexican anthropogenic methane emissions over the 2010–2017 period, mainly driven by oil and gas emissions. Our best estimates of mean 2010–2017 wetland emissions are 8.4 (6.4–10.6) Tg a−1 for CONUS, 9.9 (7.8–12.0) Tg a−1 for Canada, and 0.6 (0.4–0.6) Tg a−1 for Mexico. Wetland emissions in CONUS show an increasing trend of +2.6 (+1.7 to +3.8)% a−1 over 2010–2017 correlated with precipitation.


2022 ◽  
Vol 2 ◽  
Author(s):  
André Butz ◽  
Valentin Hanft ◽  
Ralph Kleinschek ◽  
Matthias Max Frey ◽  
Astrid Müller ◽  
...  

Satellite measurements of the atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and carbon monoxide (CO) require careful validation. In particular for the greenhouse gases CO2 and CH4, concentration gradients are minute challenging the ultimate goal to quantify and monitor anthropogenic emissions and natural surface-atmosphere fluxes. The upcoming European Copernicus Carbon Monitoring mission (CO2M) will focus on anthropogenic CO2 emissions, but it will also be able to measure CH4. There are other missions such as the Sentinel-5 Precursor and the Sentinel-5 series that target CO which helps attribute the CO2 and CH4 variations to specific processes. Here, we review the capabilities and use cases of a mobile ground-based sun-viewing spectrometer of the type EM27/SUN. We showcase the performance of the mobile system for measuring the column-average dry-air mole fractions of CO2 (XCO2), CH4 (XCH4) and CO (XCO) during a recent deployment (Feb./Mar. 2021) in the vicinity of Japan on research vessel Mirai which adds to our previous campaigns on ships and road vehicles. The mobile EM27/SUN has the potential to contribute to the validation of 1) continental-scale background gradients along major ship routes on the open ocean, 2) regional-scale gradients due to continental outflow across the coast line, 3) urban or other localized emissions as mobile part of a regional network and 4) emissions from point sources. Thus, operationalizing the mobile EM27/SUN along these use cases can be a valuable asset to the validation activities for CO2M, in particular, and for various upcoming satellite missions in general.


Author(s):  
Xuyan Liu ◽  
Siwen Wang ◽  
Qianqian Zhang ◽  
Chunlai Jiang ◽  
Linlin Liang ◽  
...  

Author(s):  
Maite Bauwens ◽  
Bert Verreyken ◽  
Trissevgeni Stavrakou ◽  
Jean-François Müller ◽  
Isabelle De Smedt

Abstract Trends of formaldehyde (HCHO) linked to anthropogenic activity over large cities located in the Asian continent are calculated for the period 2005–2019 using the Quality Assurance for Essential Climate Variables (QA4ECV) dataset from the Ozone Monitoring Instrument (OMI) aboard the Aura satellite. Contributions due to anthropogenic emissions are isolated by applying a correction based on near-surface temperature in order to account for interference from local biogenic emissions. Strong positive trends are derived over the Middle East and the Indian subcontinent (up to 3.6% yr-1 and 2.4% yr-1 respectively) where regulations of anthropogenic non-methane volatile organic compound (NMVOC) emissions are currently limited. Weaker trends are observed over cities located in China, where the air pollution action plan (2013) may have mitigated NMVOC trends early on, but targeted legislature concerning VOC emissions was only recently introduced. HCHO trends for cities located in South and Equatorial Asia are mostly not significant or very uncertain. Cities located in Taiwan and Japan (regions in Asia where legislation has been in place since the early 2000s) display mostly negative trends.


Author(s):  
Sandra Ceballos-Santos ◽  
Jaime González-Pardo ◽  
David C. Carslaw ◽  
Ana Santurtún ◽  
Miguel Santibáñez ◽  
...  

The global COVID-19 pandemic that began in late December 2019 led to unprecedented lockdowns worldwide, providing a unique opportunity to investigate in detail the impacts of restricted anthropogenic emissions on air quality. A wide range of strategies and approaches exist to achieve this. In this paper, we use the “deweather” R package, based on Boosted Regression Tree (BRT) models, first to remove the influences of meteorology and emission trend patterns from NO, NO2, PM10 and O3 data series, and then to calculate the relative changes in air pollutant levels in 2020 with respect to the previous seven years (2013–2019). Data from a northern Spanish region, Cantabria, with all types of monitoring stations (traffic, urban background, industrial and rural) were used, dividing the calendar year into eight periods according to the intensity of government restrictions. The results showed mean reductions in the lockdown period above −50% for NOx, around −10% for PM10 and below −5% for O3. Small differences were found between the relative changes obtained from normalised data with respect to those from observations. These results highlight the importance of developing an integrated policy to reduce anthropogenic emissions and the need to move towards sustainable mobility to ensure safer air quality levels, as pre-existing concentrations in some cases exceed the safe threshold.


2021 ◽  
Vol 21 (24) ◽  
pp. 18227-18245
Author(s):  
Amir H. Souri ◽  
Kelly Chance ◽  
Juseon Bak ◽  
Caroline R. Nowlan ◽  
Gonzalo González Abad ◽  
...  

Abstract. Questions about how emissions are changing during the COVID-19 lockdown periods cannot be answered by observations of atmospheric trace gas concentrations alone, in part due to simultaneous changes in atmospheric transport, emissions, dynamics, photochemistry, and chemical feedback. A chemical transport model simulation benefiting from a multi-species inversion framework using well-characterized observations should differentiate those influences enabling to closely examine changes in emissions. Accordingly, we jointly constrain NOx and VOC emissions using well-characterized TROPOspheric Monitoring Instrument (TROPOMI) HCHO and NO2 columns during the months of March, April, and May 2020 (lockdown) and 2019 (baseline). We observe a noticeable decline in the magnitude of NOx emissions in March 2020 (14 %–31 %) in several major cities including Paris, London, Madrid, and Milan, expanding further to Rome, Brussels, Frankfurt, Warsaw, Belgrade, Kyiv, and Moscow (34 %–51 %) in April. However, NOx emissions remain at somewhat similar values or even higher in some portions of the UK, Poland, and Moscow in March 2020 compared to the baseline, possibly due to the timeline of restrictions. Comparisons against surface monitoring stations indicate that the constrained model underrepresents the reduction in surface NO2. This underrepresentation correlates with the TROPOMI frequency impacted by cloudiness. During the month of April, when ample TROPOMI samples are present, the surface NO2 reductions occurring in polluted areas are described fairly well by the model (model: −21 ± 17 %, observation: −29 ± 21 %). The observational constraint on VOC emissions is found to be generally weak except for lower latitudes. Results support an increase in surface ozone during the lockdown. In April, the constrained model features a reasonable agreement with maximum daily 8 h average (MDA8) ozone changes observed at the surface (r=0.43), specifically over central Europe where ozone enhancements prevail (model: +3.73 ± 3.94 %, +1.79 ppbv, observation: +7.35 ± 11.27 %, +3.76 ppbv). The model suggests that physical processes (dry deposition, advection, and diffusion) decrease MDA8 surface ozone in the same month on average by −4.83 ppbv, while ozone production rates dampened by largely negative JNO2[NO2]-kNO+O3[NO][O3] become less negative, leading ozone to increase by +5.89 ppbv. Experiments involving fixed anthropogenic emissions suggest that meteorology contributes to 42 % enhancement in MDA8 surface ozone over the same region with the remaining part (58 %) coming from changes in anthropogenic emissions. Results illustrate the capability of satellite data of major ozone precursors to help atmospheric models capture ozone changes induced by abrupt emission anomalies.


2021 ◽  
Vol 50 (2-3) ◽  
Author(s):  
Vanja Debevec ◽  
Jože Rakovec

Tourism activities in caves can result in changes in the microclimates of caves. The natural microclimate in closed caves is constant due to the balance between cave air and cave walls, while in open caves exchanges with outside air influence the microclimate. Visits to caves, especially in closed smaller caves, can thus endanger the natural balance if the microclimate does not return to natural conditions quickly enough.Continuous monitoring of the temperature and concentration of carbon dioxide in Škocjan Caves enables the assessment of the impact of visits. For this purpose, we used data measured in the relatively closed Silent Cave, at the locations named Calvary (Kalvarija), Tent (Šotor), and Passage (Prehod) in 2016, and in the wide open Murmuring Cave, at the locations named Bridge (Most) and Rimstone Pools (Ponvice), in 2013. The outdoor air temperature, as measured at the Škocjan meteorological station on the surface plateau, was considered in both cases. Along the tourist part of Škocjan Caves, the most closed part of the cave in Silent Cave is the location at Calvary, when the entrance doors through an artificially dug tunnel are closed. During the visits, the microclimate is subjected to draughts through open doors and to anthropogenic emissions. The data suggest that the influence of draughts predominates over direct anthropogenic emissions. In winter or on cold days air flows upwards and through the tunnel out of the cave, whereas in summer or on warm days it flows downwards. In such cases, the CO2 concentration decreases markedly due to the downwards chimney effect as the concentration in the outside air is much lower than in the cave. The data show that the temperature overnight and towards morning always returns to its natural value even in this rather small location in the cave. The changes in CO2 concentration persist for a longer period, until the time of the first visit the next morning, when it is again perturbed by a new visit. The data on time courses support the theoretically estimated characteristic of the exponential decline of disturbances backward towards natural conditions, depending on the size of a cave and on the efficiency of exchanges with its walls. For tem­perature, this characteristic time tT is about three to six hours at the Calvary site. The return of CO2 to natural conditions tCO2 is longer and its estimate less reliable than the one for temperature. In the wide-open and large Murmuring Cave, the impact of visits is negligible throughout the year. In this part of the cave we can observe the influence of external daily and annual changes, the amplitudes of which get smaller, and their phase lags bigger, deeper in the cave.


Sign in / Sign up

Export Citation Format

Share Document