scholarly journals Preliminary analysis of distributed in situ soil moisture measurements

2005 ◽  
Vol 2 ◽  
pp. 81-86 ◽  
Author(s):  
L. Brocca ◽  
M. Galli ◽  
M. Stelluti

Abstract. Surface soil moisture content is highly variable in both space and time. Remote sensing can provide an effective methodology for mapping surface moisture content over large areas but ground based measurements are required to test its reliability and to calibrate retrieval algorithms. Recently, we had the opportunity to design and perform an experiment aimed at jointly acquiring measurements of surface soil water content at various locations and remotely sensed hyperspectral data. The area selected for the experiment is located in central Umbria and it extends for 90km2. For the area, detailed lithological and multi-temporal landslide inventory maps were available. We identified eight plots where measurements of soil water content were made using a Time Domain Reflectometer (TDR). The plots range in size from 100m2 to 600m2, and cover a variety of topographic and morphological settings. The TDR measurements were conducted during four days, on 5 April, 15 April, 2 May and 3 May 2004. On 3 May the NERC airborne CASI 2 acquired the hyperspectral data. Preliminary analysis concerning the matching between the landslides and the soil moisture were reported. Statistical and geostatistical analysis investigating the spatial-temporal soil moisture distribution were performed. These results will be compared with the data of surface temperature obtained from the remotely sensed hyperspectral sensor.

Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
Horst Gerke ◽  
Rolf Kuchenbuch

AbstractPlants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties.In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix.Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations.


2017 ◽  
Vol 44 (10) ◽  
pp. 1007
Author(s):  
Jian-Jun Wang ◽  
Wei-Hu Lin ◽  
Yan-Ting Zhao ◽  
Cheng Meng ◽  
An-Wei Ma ◽  
...  

The interaction effects between temperature and soil moisture on Festuca sinensis Keng ex E.B.Alexeev were analysed to determine how F. sinensis responds to these environmental conditions. A pot experiment was conducted in a greenhouse under simulated growth conditions with four soil moisture contents (80, 65, 50 and 35% relative saturation moisture content) and three temperature conditions (15, 20 and 25°C). Physiological (relative water content and root activity) and biochemical parameters (chlorophyll, peroxidase (POD), malondialdehyde (MDA), soluble protein, soluble sugar and free proline) were evaluated at the seedling stage. Results showed that with a decrease in soil water content, the POD activities, MDA content, soluble protein content, soluble sugar content and free proline content of plants under the 15°C and 20°C treatments initially decreased and then increased, whereas they increased with a decrease of soil water content at 25°C. The relative water contents of plants under the three temperature treatments decreased with a decreasing soil moisture content, but then increased temperature significantly reduced the relative water content of the seedlings under low soil water content. The chlorophyll contents of plants under the 25°C treatment decreased with a decrease of soil moisture content, but those of plants under the 15°C and 20°C treatments initially increased and then decreased. The root activities of plants under the 15°C and 20°C treatments increased with a decreasing soil moisture content; however, those of plants under the 25°C treatment initially increased and then decreased. Thus, results indicated that changes of temperature and soil moisture content had significant and complicated effects on the physiological-biochemical characteristics of F. sinensis; the conditions of 20°C and 65% RSMC had positive effects on F. sinensis seedling growth and the appropriate drought stress could promote the growth of seedling roots under the three different temperature conditions. In conclusion, F. sinensis seedlings could adapt to certain changes in the ecological environment by regulating their physiological and biochemical reactions.


2003 ◽  
Vol 279 (1-4) ◽  
pp. 1-17 ◽  
Author(s):  
Gary C Heathman ◽  
Patrick J Starks ◽  
Lajpat R Ahuja ◽  
Thomas J Jackson

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 222
Author(s):  
Wenkai Lei ◽  
Hongyuan Dong ◽  
Pan Chen ◽  
Haibo Lv ◽  
Liyun Fan ◽  
...  

In order to understand the hydrological process of expansive soil slopes, simulated rainfall experiments were conducted to study the effects of slope gradient and initial soil moisture content on runoff and infiltration for expansive soil slopes located in south China. The field program consisted of four neighboring slopes (70%, 47%, 32%, and 21%) instrumented by a runoff collection system and moisture content sensors (EC-5). Results from the monitored tests indicate that there was delay in the response of surface runoff. The runoff initiation time decreased with initial soil water content and increasing slope gradient. After the generation of runoff, the cumulative runoff per unit area and the runoff rate increased linearly and logarithmically with time, respectively. The greater the initial soil moisture content was, the smaller the influence of slope gradient on runoff. A rainfall may contribute from 39% to about 100% of its total rainfall as infiltration, indicating that infiltration remained an important component of the rainwater falling on the slope, despite the high initial soil water content. The larger the initial sealing degree of slope surface was the smaller the cumulative infiltration per unit area of the slope. However, the soil moisture reaction was more obvious. The influence of inclination is no longer discernible at high initial moisture levels. The greater the initial soil moisture content and the smaller the slope gradient, the weaker was the change of soil water content caused by simulated rainfall. The influence of initial soil moisture content and slope gradient on the processes of flow and changes of soil water content identified in this study may be helpful in the surface water control for expansive soil slopes.


2021 ◽  
Author(s):  
Djim Diongue ◽  
Didier Orange ◽  
Waly Faye ◽  
Olivier Roupsard ◽  
Frederic Do ◽  
...  

<p>Vegetation strongly affects the water cycle, and the interactions between vegetation and soil moisture are fundamental for ecological processes in semiarid regions. Therefore, characterizing the variation in soil moisture is important to understand the ecological sustainability of cropping systems towards food security. The present study aims at exploring factors and mechanisms influencing soil moisture variability in the Faidherbia albida (FA) parkland at Sob basin located in the center of Senegal [1]. Volumetric soil moisture content at multiple depths was monitored at 15 locations distributed along a transect (upper slope, mid-slope and lower slope) and different FA tree position (under, at the limit and outside canopy) from August to October 2020. A portable TRIME Time Domain Reflectometry (TDR) Tube Probe (IMKO, Germany) was used to determine soil volumetric moisture content while being placed at specific depth intervals inside a PVC access tube set up at each location. Soil moisture was monitored at 10 cm interval from 20 to 420 cm during the rainy season from July to October 2020. Results of soil moisture profiles along the transects exhibit two main zones based on the standard deviation (SD) and the inflection of the coefficient of variation (CV): shallow soil moisture (SSM) and deep soil moisture (DSM). For SSM observed at 20-60 cm of the soil layer, both mean soil moisture and SD increase with depth, the lowest mean value (8%) being observed at the top surface. This soil layer is influenced by rainfall infiltration and daily evaporation. For DSM observed at 70-420 cm, the moisture pattern can be further divided into 4 soil sublayers taking the mean soil moisture vertical distribution as reference: (i) a rainfall infiltration layer (70-160 cm) which appears mainly influenced by cumulative rainfall infiltration in addition to transpiration of grassland and crops (shallow root system); (ii) a rainfall-transpiration layer (170-250 cm) which is still an infiltration layer but more influenced by crops transpiration; (iii) a transpiration layer (260-350 cm) which can be recharged by rainfall infiltration during heavy rainfall and supply deep root system; and (iv) deep transpiration layer (360-400 cm) which has DSM that can be influenced by extremely deep root vegetation such as FA. The factors influencing the soil water content varied with the topography. The soil water content SWC (mean and median value of 27.2 and 29.6% respectively) in the lower slope was significantly higher than that at middle (mean and median value of 14.4 and 13.2 % respectively) and upper slope (mean and median value of 16.8 and 18.4 % respectively). At last, soil water content was positively correlated with the distance from the FA, regardless the slope. The higher water content for both SSM and DSM was observed outside the FA canopy. This result refutes the initial hypothesis of higher SWC under trees and support a more detailed analysis of the infiltration capacity in relationship with the FA position.</p><div> <div> <p>[1] Faidherbia-Flux : https://lped.info/wikiObsSN/?Faidherbia-Flux</p> </div> </div>


1968 ◽  
Vol 46 (10) ◽  
pp. 1327-1329 ◽  
Author(s):  
D. J. Ursino ◽  
G. Krotkov

White pine plants in their third year of growth were maintained for a 4-month period on soil having a moisture content of either 7% or 14%. In September, at the end of this period and at a time when translocation to the root is known to be high, the plants were permitted to photoassimilate 14CO2, and 8 hours later the distribution of 14C among the root, the old shoot, and the new shoot was determined.The plants maintained for the 4-month period on the 7% soil moisture environment had values for new needle length and root and new shoot fresh weights which were approximately 55–60% of the values from those plants grown on the higher soil moisture environment. However, despite such retarded growth, the magnitude of translocation to the root during the 8 hours after 14CO2 assimilation was only slightly lower in those plants grown on the lower soil moisture environment.From the results it is suggested that the decreased amount of translocation to the roots previously observed in pine plants in June and July cannot be attributed to reduced root metabolic activity and growth caused at that time by lowered soil water content.


2010 ◽  
Vol 53 (10) ◽  
pp. 1527-1532 ◽  
Author(s):  
YuanJun Zhu ◽  
YunQiang Wang ◽  
MingAn Shao

1975 ◽  
Vol 39 (2) ◽  
pp. 238-242 ◽  
Author(s):  
E. L. Skidmore ◽  
J. D. Dickerson ◽  
H. Schimmelpfennig

2009 ◽  
Vol 6 (5) ◽  
pp. 6425-6454
Author(s):  
H. Stephen ◽  
S. Ahmad ◽  
T. C. Piechota ◽  
C. Tang

Abstract. The Tropical Rainfall Measuring Mission (TRMM) carries aboard the Precipitation Radar (TRMMPR) that measures the backscatter (σ°) of the surface. σ° is sensitive to surface soil moisture and vegetation conditions. Due to sparse vegetation in arid and semi-arid regions, TRMMPR σ° primarily depends on the soil water content. In this study we relate TRMMPR σ° measurements to soil water content (ms) in Lower Colorado River Basin (LCRB). σ° dependence on ms is studied for different vegetation greenness values determined through Normalized Difference Vegetation Index (NDVI). A new model of σ° that couples incidence angle, ms, and NDVI is used to derive parameters and retrieve soil water content. The calibration and validation of this model are performed using simulated and measured ms data. Simulated ms is estimated using Variable Infiltration Capacity (VIC) model whereas measured ms is acquired from ground measuring stations in Walnut Gulch Experimental Watershed (WGEW). σ° model is calibrated using VIC and WGEW ms data during 1998 and the calibrated model is used to derive ms during later years. The temporal trends of derived ms are consistent with VIC and WGEW ms data with correlation coefficient (R) of 0.89 and 0.74, respectively. Derived ms is also consistent with the measured precipitation data with R=0.76. The gridded VIC data is used to calibrate the model at each grid point in LCRB and spatial maps of the model parameters are prepared. The model parameters are spatially coherent with the general regional topography in LCRB. TRMMPR σ° derived soil moisture maps during May (dry) and August (wet) 1999 are spatially similar to VIC estimates with correlation 0.67 and 0.76, respectively. This research provides new insights into Ku-band σ° dependence on soil water content in the arid regions.


Sign in / Sign up

Export Citation Format

Share Document