scholarly journals Retrieval of atmospheric CH<sub>4</sub> vertical information from TCCON FTIR spectra

2019 ◽  
Author(s):  
Minqiang Zhou ◽  
Bavo Langerock ◽  
Mahesh Kumar Sha ◽  
Nicolas Kumps ◽  
Christian Hermans ◽  
...  

Abstract. TCCON (Total Carbon Column Observing Network) column-averaged dry air mole fraction of CH4 (XCH4) measurements have been widely used to validate satellite observations and to estimate model simulations. The GGG2014 code is the standard TCCON retrieval software performing a profile scaling retrieval. In order to obtain several vertical information in addition to total column, in this study, the SFIT4 retrieval code is applied to retrieve CH4 mole fraction vertical profile using TCCON spectra (SFIT4TCCON) at six sites (Ny-Ålesund, Sodankylä, Bialystok, Bremen, Orléans and St Denis) during the time period of 2016−2017. The retrieval strategy of SFIT4TCCON is investigated. The degree of freedom for signal of the SFIT4TCCON retrieval is about 2.4, with two distinct species of information in the troposphere and in the stratosphere. The averaging kernel and error budget of the SFIT4TCCON retrieval are presented. The data accuracy and precision of the SFIT4TCCON retrievals, including the total column and two partial columns (in the troposphere and stratosphere), are estimated by TCCON standard retrievals, ground-based in situ measurements, ACE-FTS satellite observations, TCCON proxy data and AirCore measurements. By comparison against TCCON standard retrievals, it is found that the retrieval uncertainty of SFIT4TCCON XCH4 is similar to that of TCCON standard retrievals with the systematic uncertainty within 0.35 % and the random uncertainty about 0.5 %. The tropospheric and stratospheric XCH4 from SFIT4TCCON retrievals are assessed by comparing with AirCore measurements at Sodankylä, and there is a 1.2 % overestimation in the SFIT4TCCON tropospheric XCH4 and a 4.0 % underestimation in the SFIT4TCCON stratospheric XCH4, which are within the systematic uncertainties of SFIT4TCCON retrieved partial columns in the troposphere and stratosphere, respectively.

2019 ◽  
Vol 12 (11) ◽  
pp. 6125-6141 ◽  
Author(s):  
Minqiang Zhou ◽  
Bavo Langerock ◽  
Mahesh Kumar Sha ◽  
Nicolas Kumps ◽  
Christian Hermans ◽  
...  

Abstract. The Total Carbon Column Observing Network (TCCON) column-averaged dry air mole fraction of CH4 (XCH4) measurements have been widely used to validate satellite observations and to estimate model simulations. The GGG2014 code is the standard TCCON retrieval software used in performing a profile scaling retrieval. In order to obtain several vertical pieces of information in addition to the total column, in this study, the SFIT4 retrieval code is applied to retrieve the CH4 mole fraction vertical profile from the Fourier transform spectrometer (FTS) spectrum at six sites (Ny-Ålesund, Sodankylä, Bialystok, Bremen, Orléans and St Denis) during the time period of 2016–2017. The retrieval strategy of the CH4 profile retrieval from ground-based FTS near-infrared (NIR) spectra using the SFIT4 code (SFIT4NIR) is investigated. The degree of freedom for signal (DOFS) of the SFIT4NIR retrieval is about 2.4, with two distinct pieces of information in the troposphere and in the stratosphere. The averaging kernel and error budget of the SFIT4NIR retrieval are presented. The data accuracy and precision of the SFIT4NIR retrievals, including the total column and two partial columns (in the troposphere and stratosphere), are estimated by TCCON standard retrievals, ground-based in situ measurements, Atmospheric Chemistry Experiment – Fourier Transform Spectrometer (ACE-FTS) satellite observations, TCCON proxy data and AirCore and aircraft measurements. By comparison against TCCON standard retrievals, it is found that the retrieval uncertainty of SFIT4NIR XCH4 is similar to that of TCCON standard retrievals with systematic uncertainty within 0.35 % and random uncertainty of about 0.5 %. The tropospheric and stratospheric XCH4 from SFIT4NIR retrievals are assessed by comparison with AirCore and aircraft measurements, and there is a 1.0 ± 0.3 % overestimation in the SFIT4NIR tropospheric XCH4 and a 4.0 ± 2.0 % underestimation in the SFIT4NIR stratospheric XCH4, which are within the systematic uncertainties of SFIT4NIR-retrieved partial columns in the troposphere and stratosphere respectively.


Author(s):  
Debra Wunch ◽  
Geoffrey C. Toon ◽  
Jean-François L. Blavier ◽  
Rebecca A. Washenfelder ◽  
Justus Notholt ◽  
...  

A global network of ground-based Fourier transform spectrometers has been founded to remotely measure column abundances of CO 2 , CO, CH 4 , N 2 O and other molecules that absorb in the near-infrared. These measurements are directly comparable with the near-infrared total column measurements from space-based instruments. With stringent requirements on the instrumentation, acquisition procedures, data processing and calibration, the Total Carbon Column Observing Network (TCCON) achieves an accuracy and precision in total column measurements that is unprecedented for remote-sensing observations (better than 0.25% for CO 2 ). This has enabled carbon-cycle science investigations using the TCCON dataset, and allows the TCCON to provide a link between satellite measurements and the extensive ground-based in situ network.


2020 ◽  
Vol 12 (21) ◽  
pp. 3583
Author(s):  
Hui Yang ◽  
Gefei Feng ◽  
Ru Xiang ◽  
Yunjing Xu ◽  
Yong Qin ◽  
...  

Carbon dioxide (CO2) is a significant atmospheric greenhouse gas and its concentrations can be observed by in situ surface stations, aircraft flights and satellite sensors. This paper investigated the ability of the CO2 satellite observations to monitor, analyze and predict the horizontal and vertical distribution of atmospheric CO2 concentration at global scales. CO2 observations retrieved by an Atmospheric Infrared Sounder (AIRS) were inter-compared with the Global Atmosphere Watch Program (GAW) and HIAPER Pole-to-Pole Observations (HIPPOs), with reference to the measurements obtained using high-resolution ground-based Fourier Transform Spectrometers (FTS) in the Total Carbon Column Observing Network (TCCON) from near-surface level to the mid-to-high troposphere. After vertically integrating the AIRS-retrieved values with the column averaging kernels of TCCON measurements, the AIRS observations are spatio-temporally compared with HIPPO-integrated profiles in the mid-to-high troposphere. Five selected GAW stations are used for comparisons with TCCON sites near the surface of the Earth. The results of AIRS, TCCON (5–6 km), GAW and TCCON (1 km) CO2 measurements from 2007 to 2013 are compared, analyzed and discussed at their respective altitudes. The outcomes indicate that the difference of about 3.0 ppmv between AIRS and GAW or other highly accurate in situ surface measurements is mainly due to the different vertical altitudes, rather than the errors in the AIRS. The study reported here also explores the potential of AIRS satellite observations for analyzing the spatial distribution and seasonal variation of CO2 concentration at global scales.


2010 ◽  
Vol 3 (2) ◽  
pp. 989-1021 ◽  
Author(s):  
N. M. Deutscher ◽  
D. W. T. Griffith ◽  
G. W. Bryant ◽  
P. O. Wennberg ◽  
G. C. Toon ◽  
...  

Abstract. An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO2 and O2 and other gases. Measured CO2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January–February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS XCO2 relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis.


2020 ◽  
Vol 12 (19) ◽  
pp. 3155
Author(s):  
Haruki Oshio ◽  
Yukio Yoshida ◽  
Tsuneo Matsunaga ◽  
Nicholas M. Deutscher ◽  
Manvendra Dubey ◽  
...  

The proxy method, using the ratio of total column CH4 to CO2 to reduce the effects of common biases, has been used to retrieve column-averaged dry-air mole fraction of CH4 from satellite data. The present study characterizes the remaining scattering effects in the CH4/CO2 ratio component of the Greenhouse gases Observing SATellite (GOSAT) retrieval and uses them for bias correction. The variation of bias between the GOSAT and Total Carbon Column Observing Network (TCCON) ratio component with GOSAT data-derived variables was investigated. Then, it was revealed that the variability of the bias could be reduced by using four variables for the bias correction—namely, airmass, 2 μm band radiance normalized with its noise level, the ratio between the partial column-averaged dry-air mole fraction of CH4 for the lower atmosphere and that for the upper atmosphere, and the difference in surface albedo between the CH4 and CO2 bands. The ratio of partial column CH4 reduced the dependence of bias on the cloud fraction and the difference between hemispheres. In addition to the reduction of bias (from 0.43% to 0%), the precision (standard deviation of the difference between GOSAT and TCCON) was reduced from 0.61% to 0.55% by the correction. The bias and its temporal variation were reduced for each site: the mean and standard deviation of the mean bias for individual seasons were within 0.2% for most of the sites.


2014 ◽  
Vol 7 (8) ◽  
pp. 2631-2644 ◽  
Author(s):  
H. Nguyen ◽  
G. Osterman ◽  
D. Wunch ◽  
C. O'Dell ◽  
L. Mandrake ◽  
...  

Abstract. Satellite measurements are often compared with higher-precision ground-based measurements as part of validation efforts. The satellite soundings are rarely perfectly coincident in space and time with the ground-based measurements, so a colocation methodology is needed to aggregate "nearby" soundings into what the instrument would have seen at the location and time of interest. We are particularly interested in validation efforts for satellite-retrieved total column carbon dioxide (XCO2), where XCO2 data from Greenhouse Gas Observing Satellite (GOSAT) retrievals (ACOS, NIES, RemoteC, PPDF, etc.) or SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) are often colocated and compared to ground-based column XCO2 measurement from Total Carbon Column Observing Network (TCCON). Current colocation methodologies for comparing satellite measurements of total column dry-air mole fractions of CO2 (XCO2) with ground-based measurements typically involve locating and averaging the satellite measurements within a latitudinal, longitudinal, and temporal window. We examine a geostatistical colocation methodology that takes a weighted average of satellite observations depending on the "distance" of each observation from a ground-based location of interest. The "distance" function that we use is a modified Euclidian distance with respect to latitude, longitude, time, and midtropospheric temperature at 700 hPa. We apply this methodology to XCO2 retrieved from GOSAT spectra by the ACOS team, cross-validate the results to TCCON XCO2 ground-based data, and present some comparisons between our methodology and standard existing colocation methods showing that, in general, geostatistical colocation produces smaller mean-squared error.


2018 ◽  
Vol 18 (19) ◽  
pp. 13881-13901 ◽  
Author(s):  
Minqiang Zhou ◽  
Bavo Langerock ◽  
Corinne Vigouroux ◽  
Mahesh Kumar Sha ◽  
Michel Ramonet ◽  
...  

Abstract. Atmospheric carbon monoxide (CO) and methane (CH4) mole fractions are measured by ground-based in situ cavity ring-down spectroscopy (CRDS) analyzers and Fourier transform infrared (FTIR) spectrometers at two sites (St Denis and Maïdo) on Reunion Island (21∘ S, 55∘ E) in the Indian Ocean. Currently, the FTIR Bruker IFS 125HR at St Denis records the direct solar spectra in the near-infrared range, contributing to the Total Carbon Column Observing Network (TCCON). The FTIR Bruker IFS 125HR at Maïdo records the direct solar spectra in the mid-infrared (MIR) range, contributing to the Network for the Detection of Atmospheric Composition Change (NDACC). In order to understand the atmospheric CO and CH4 variability on Reunion Island, the time series and seasonal cycles of CO and CH4 from in situ and FTIR (NDACC and TCCON) measurements are analyzed. Meanwhile, the difference between the in situ and FTIR measurements are discussed. The CO seasonal cycles observed from the in situ measurements at Maïdo and FTIR retrievals at both St Denis and Maïdo are in good agreement with a peak in September–November, primarily driven by the emissions from biomass burning in Africa and South America. The dry-air column averaged mole fraction of CO (XCO) derived from the FTIR MIR spectra (NDACC) is about 15.7 ppb larger than the CO mole fraction near the surface at Maïdo, because the air in the lower troposphere mainly comes from the Indian Ocean while the air in the middle and upper troposphere mainly comes from Africa and South America. The trend for CO on Reunion Island is unclear during the 2011–2017 period, and more data need to be collected to get a robust result. A very good agreement is observed in the tropospheric and stratospheric CH4 seasonal cycles between FTIR (NDACC and TCCON) measurements, and in situ and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite measurements, respectively. In the troposphere, the CH4 mole fraction is high in August–September and low in December–January, which is due to the OH seasonal variation. In the stratosphere, the CH4 mole fraction has its maximum in March–April and its minimum in August–October, which is dominated by vertical transport. In addition, the different CH4 mole fractions between the in situ, NDACC and TCCON CH4 measurements in the troposphere are discussed, and all measurements are in good agreement with the GEOS-Chem model simulation. The trend of XCH4 is 7.6±0.4 ppb yr−1 from the TCCON measurements over the 2011 to 2017 time period, which is consistent with the CH4 trend of 7.4±0.5 ppb yr−1 from the in situ measurements for the same time period at St Denis.


2018 ◽  
Author(s):  
Minqiang Zhou ◽  
Bavo Langerock ◽  
Corinne Vigouroux ◽  
Mahesh Kumar Sha ◽  
Michel Ramonet ◽  
...  

Abstract. Atmospheric carbon monoxide (CO) and methane (CH4) concentrations are measured by ground-based in-situ Cavity Ring-Down Spectroscopy (CRDS) analyzers and Fourier transform infrared (FTIR) spectrometers at two sites (St Denis and Maïdo) on Reunion Island (21° S, 55° E) in the Indian Ocean. Currently, the FTIR Bruker IFS 125HR at St Denis records the direct solar spectra in the near-infrared range, contributing to the Total Carbon Column Observing Network (TCCON). The FTIR Bruker IFS 125HR at Maïdo records the direct solar spectra in the mid-infrared range, contributing to the Network for the Detection of Atmospheric Composition Change (NDACC). In order to understand the atmospheric CO and CH4 variability on Reunion Island, the time series and seasonal cycles of CO and CH4 from in-situ and FTIR (NDACC and TCCON) measurements are analysed. Meanwhile, the difference between the in-situ and FTIR measurements are discussed. The CO seasonal cycles observed from the in-situ measurements at Maïdo and FTIR retrievals both at St Denis and Maïdo are in good agreement with a peak in September–November, primarily driven by the emissions from biomass burning in Africa and South America. The dry-air column averaged mole fraction of CO (XCO) derived from the FTIR MIR spectra (NDACC) is about 15.7 ppb larger than the CO mole fraction near the surface at Maïdo, because the air in the lower troposphere mainly comes from the Indian Ocean while the air in the middle and upper troposphere mainly comes from Africa and South America. The trend for CO on Reunion Island is unclear during 2011–2017, and more data need to be collected to get a robust result. A very good agreement is observed in the tropospheric and stratospheric CH4 seasonal cycles between FTIR (NDACC and TCCON) measurements, and in-situ and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite measurements, respectively. In the troposphere, the CH4 mole fraction is high in August–September and low in December–January, which is due to the OH seasonal variation. In the stratosphere, CH4 concentration has its maximum in March–April and its minimum in August–October, which is dominated by the vertical transport. In addition, the different CH4 concentration between the in-situ, NDACC and TCCON CH4 measurements in the troposphere are discussed, and all measurements are in good agreement with the GEOS-Chem model simulation. The trend of XCH4 is 7.6 ± 0.4 ppb/year from the TCCON measurements over the 2011–2017 time period, which is consistent with the CH4 of 7.4 ± 0.5 ppb/year from the in-situ measurements for the same time period at St Denis.


2016 ◽  
Vol 16 (3) ◽  
pp. 1289-1302 ◽  
Author(s):  
L. Feng ◽  
P. I. Palmer ◽  
R. J. Parker ◽  
N. M. Deutscher ◽  
D. G. Feist ◽  
...  

Abstract. Estimates of the natural CO2 flux over Europe inferred from in situ measurements of atmospheric CO2 mole fraction have been used previously to check top-down flux estimates inferred from space-borne dry-air CO2 column (XCO2) retrievals. Several recent studies have shown that CO2 fluxes inferred from XCO2 data from the Japanese Greenhouse gases Observing SATellite (GOSAT) and the Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) have larger seasonal amplitudes and a more negative annual net CO2 balance than those inferred from the in situ data. The cause of this elevated European uptake of CO2 is still unclear, but some recent studies have suggested that this is a genuine scientific phenomenon. Here, we put forward an alternative hypothesis and show that realistic levels of bias in GOSAT data can result in an erroneous estimate of elevated uptake over Europe. We use a global flux inversion system to examine the relationship between measurement biases and estimates of CO2 uptake from Europe. We establish a reference in situ inversion that uses an Ensemble Kalman Filter (EnKF) to assimilate conventional surface mole fraction observations and XCO2 retrievals from the surface-based Total Carbon Column Observing Network (TCCON). We use the same EnKF system to assimilate two independent versions of GOSAT XCO2 data. We find that the GOSAT-inferred European terrestrial biosphere uptake peaks during the summer, similar to the reference inversion, but the net annual flux is 1.40 ± 0.19 GtC a−1 compared to a value of 0.58 ± 0.14 GtC a−1 for our control inversion that uses only in situ data. To reconcile these two estimates, we perform a series of numerical experiments that assimilate observations with added biases or assimilate synthetic observations for which part or all of the GOSAT XCO2 data are replaced with model data. We find that for our global flux inversions, a large portion (60–90 %) of the elevated European uptake inferred from GOSAT data in 2010 is due to retrievals outside the immediate European region, while the remainder can largely be explained by a sub-ppm retrieval bias over Europe. We use a data assimilation approach to estimate monthly GOSAT XCO2 biases from the joint assimilation of in situ observations and GOSAT XCO2 retrievals. The inferred biases represent an estimate of systematic differences between GOSAT XCO2 retrievals and the inversion system at regional or sub-regional scales. We find that a monthly varying bias of up to 0.5 ppm can explain an overestimate of the annual sink of up to 0.20 GtC a−1. Our results highlight the sensitivity of CO2 flux estimates to regional observation biases, which have not been fully characterized by the current observation network. Without further dedicated measurements we cannot prove or disprove that European ecosystems are taking up a larger-than-expected amount of CO2. More robust inversion systems are also needed to infer consistent fluxes from multiple observation types.


2010 ◽  
Vol 3 (4) ◽  
pp. 947-958 ◽  
Author(s):  
N. M. Deutscher ◽  
D. W. T. Griffith ◽  
G. W. Bryant ◽  
P. O. Wennberg ◽  
G. C. Toon ◽  
...  

Abstract. An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO2 and O2 and other gases. Measured CO2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January–February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS XCO2 relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis.


Sign in / Sign up

Export Citation Format

Share Document