Fossilization of Precambrian microfossils in the Volyn pegmatite, Ukraine
Abstract. We report on Precambrian soft-tissue microfossils from igneous rocks of the Volyn pegmatite district, associated with the Paleoproterozoic Korosten Pluton, north-western Ukraine. The fossils were recovered from m-sized miarolitic cavities and show a well-preserved 3D morphology, mostly fibrous, but with a large variety of fiber types, and also in irregular, flaky shapes reminiscent of former biofilms, and rare spherical objects. Based on literature data, own pyrolysis experiments and reflected light microscopy results, the organic matter (OM) is characterized as (oxy)kerite. Further investigations with microscopic techniques, including scanning and transmission electron microscopy, and electron microprobe analysis show that fossilization likely occurred during a hydrothermal, post-pegmatitic event, by silicification dominantly in the outermost 1–2 µm of the microfossils. The hydrothermal fluid, derived from the pegmatitic environment, was enriched in SiF4, Al, Ca, Na, K, Cl, and S. The OM shows O enrichment where N and S content is low, indicating simultaneous N and S loss during anaerobic oxidation. Mineralization with Al-silicates starts at the rim of the microfossils, continues in its outer parts into identifiable encrustations and intergrowths of clay minerals, feldspar, Ca-sulfate, Ca-phosphate, Fe-sulfide, and fluorite. Breccias, formed during collapse of some the miarolitic cavities, contain also decaying OM, which released high concentrations of dissolved NH4+, responsible for the late-stage formation of buddingtonite and tobelite-rich muscovite. The age of the fossils can be restricted to the time between the pegmatite formation, at ~1.760 Ga, and the breccia formation at ~ 1.49 Ga. As geological environment for growth of the microorganisms and fossilization we assume a geyser system, in which the essential biological components C, N, S, and P for growth of the orgabisms n the miarolitic caves were derived from microorganisms at the surface. Fossilization was induced by magmatic SiF4-rich fluids. The Volyn occurrence is a prime example of Precambrian fossils and the results underline the importance of cavities in granitic rocks as a possible habitat for microorganisms of the deep biosphere.