deep biosphere
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 71)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Vol 9 ◽  
Author(s):  
Patrick Meister ◽  
Gerhard Herda ◽  
Elena Petrishcheva ◽  
Susanne Gier ◽  
Gerald R. Dickens ◽  
...  

A numerical reaction-transport model was developed to simulate the effects of microbial activity and mineral reactions on the composition of porewater in a 230-m-thick Pleistocene interval drilled in the Peru-Chile Trench (Ocean Drilling Program, Site 1230). This site has porewater profiles similar to those along many continental margins, where intense methanogenesis occurs and alkalinity surpasses 100 mmol/L. Simulations show that microbial sulphate reduction, anaerobic oxidation of methane, and ammonium release from organic matter degradation only account for parts of total alkalinity, and excess CO2 produced during methanogenesis leads to acidification of porewater. Additional alkalinity is produced by slow alteration of primary aluminosilicate minerals to kaolinite and SiO2. Overall, alkalinity production in the methanogenic zone is sufficient to prevent dissolution of carbonate minerals; indeed, it contributes to the formation of cemented carbonate layers at a supersaturation front near the sulphate-methane transition zone. Within the methanogenic zone, carbonate formation is largely inhibited by cation diffusion but occurs rapidly if cations are transported into the zone via fluid conduits, such as faults. The simulation presented here provides fundamental insight into the diagenetic effects of the deep biosphere and may also be applicable for the long-term prediction of the stability and safety of deep CO2 storage reservoirs.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Till L. V. Bornemann ◽  
Panagiotis S. Adam ◽  
Victoria Turzynski ◽  
Ulrich Schreiber ◽  
Perla Abigail Figueroa-Gonzalez ◽  
...  

AbstractEarth’s mantle releases 38.7 ± 2.9 Tg/yr CO2 along with other reduced and oxidized gases to the atmosphere shaping microbial metabolism at volcanic sites across the globe, yet little is known about its impact on microbial life under non-thermal conditions. Here, we perform comparative metagenomics coupled to geochemical measurements of deep subsurface fluids from a cold-water geyser driven by mantle degassing. Key organisms belonging to uncultivated Candidatus Altiarchaeum show a global biogeographic pattern and site-specific adaptations shaped by gene loss and inter-kingdom horizontal gene transfer. Comparison of the geyser community to 16 other publicly available deep subsurface sites demonstrate a conservation of chemolithoautotrophic metabolism across sites. In silico replication measures suggest a linear relationship of bacterial replication with ecosystems depth with the exception of impacted sites, which show near surface characteristics. Our results suggest that subsurface ecosystems affected by geological degassing are hotspots for microbial life in the deep biosphere.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
George Westmeijer ◽  
Maliheh Mehrshad ◽  
Stephanie Turner ◽  
Linda Alakangas ◽  
Varvara Sachpazidou ◽  
...  

AbstractThe deep biosphere is an energy constrained ecosystem yet fosters diverse microbial communities that are key in biogeochemical cycling. Whether microbial communities in deep biosphere groundwaters are shaped by infiltration of allochthonous surface microorganisms or the evolution of autochthonous species remains unresolved. In this study, 16S rRNA gene amplicon analyses showed that few groups of surface microbes infiltrated deep biosphere groundwaters at the Äspö Hard Rock Laboratory, Sweden, but that such populations constituted up to 49% of the microbial abundance. The dominant persisting phyla included Patescibacteria, Proteobacteria, and Epsilonbacteraeota. Despite the hydrological connection of the Baltic Sea with the studied groundwaters, infiltrating microbes predominantly originated from deep soil groundwater. Most deep biosphere groundwater populations lacked surface representatives, suggesting that they have evolved from ancient autochthonous populations. We propose that deep biosphere groundwater communities in the Fennoscandian Shield consist of selected infiltrated and indigenous populations adapted to the prevailing conditions.


2021 ◽  
Author(s):  
Gerhard Franz ◽  
Peter Lyckberg ◽  
Vladimir Khomenko ◽  
Vsevelod Chernousenko ◽  
Hans-Martin Schulz ◽  
...  

Abstract. We report on Precambrian soft-tissue microfossils from igneous rocks of the Volyn pegmatite district, associated with the Paleoproterozoic Korosten Pluton, north-western Ukraine. The fossils were recovered from m-sized miarolitic cavities and show a well-preserved 3D morphology, mostly fibrous, but with a large variety of fiber types, and also in irregular, flaky shapes reminiscent of former biofilms, and rare spherical objects. Based on literature data, own pyrolysis experiments and reflected light microscopy results, the organic matter (OM) is characterized as (oxy)kerite. Further investigations with microscopic techniques, including scanning and transmission electron microscopy, and electron microprobe analysis show that fossilization likely occurred during a hydrothermal, post-pegmatitic event, by silicification dominantly in the outermost 1–2 µm of the microfossils. The hydrothermal fluid, derived from the pegmatitic environment, was enriched in SiF4, Al, Ca, Na, K, Cl, and S. The OM shows O enrichment where N and S content is low, indicating simultaneous N and S loss during anaerobic oxidation. Mineralization with Al-silicates starts at the rim of the microfossils, continues in its outer parts into identifiable encrustations and intergrowths of clay minerals, feldspar, Ca-sulfate, Ca-phosphate, Fe-sulfide, and fluorite. Breccias, formed during collapse of some the miarolitic cavities, contain also decaying OM, which released high concentrations of dissolved NH4+, responsible for the late-stage formation of buddingtonite and tobelite-rich muscovite. The age of the fossils can be restricted to the time between the pegmatite formation, at ~1.760 Ga, and the breccia formation at ~ 1.49 Ga. As geological environment for growth of the microorganisms and fossilization we assume a geyser system, in which the essential biological components C, N, S, and P for growth of the orgabisms n the miarolitic caves were derived from microorganisms at the surface. Fossilization was induced by magmatic SiF4-rich fluids. The Volyn occurrence is a prime example of Precambrian fossils and the results underline the importance of cavities in granitic rocks as a possible habitat for microorganisms of the deep biosphere.


2021 ◽  
Vol 12 ◽  
Author(s):  
Katherine Bedoya ◽  
Jhorman Niño ◽  
Julia Acero ◽  
Ronald Jaimes-Prada ◽  
Felipe Cabarcas ◽  
...  

Microorganisms are capable of colonizing extreme environments like deep biosphere and oil reservoirs. The prokaryotes diversity in exploited oil reservoirs is composed of indigenous microbial communities and artificially introduced microbes. In the present work, high throughput sequencing techniques were applied to analyze the microbial community from the injected and produced water in a neotropical hyper-thermophile oil reservoir located in the Orinoquia region of Colombia, South America. Tepidiphilus is the dominant bacteria found in both injection and produced waters. The produced water has a higher microbial richness and exhibits a Tepidiphilus microdiversity. The reservoir injected water is recycled and treated with the biocides glutaraldehyde and tetrakis-hydroxymethyl-phosphonium sulfate (THPS) to reduce microbial load. This process reduces microbial richness and selects a single Tepidiphilus genome (T. sp. UDEAICP_D1) as the dominant isolate. Thermus and Hydrogenobacter were subdominants in both water systems. Phylogenomic analysis of the injection water dominant Tepidiphilus positioned it as an independent branch outside T. succinatimandens and T. thermophilus lineage. Comparative analysis of the Tepidiphilus genomes revealed several genes that might be related to the biocide-resistant phenotype and the tolerance to the stress conditions imposed inside the oil well, like RND efflux pumps and type II toxin-antitoxin systems. Comparing the abundance of Tepidiphilus protein-coding genes in both water systems shows that the biocide selected Tepidiphilus sp. UDEAICP_D1 genome has enriched genes annotated as ABC-2 type transporter, ABC transporter, Methionine biosynthesis protein MetW, Glycosyltransferases, and two-component system NarL.


2021 ◽  
Vol 9 (11) ◽  
pp. 2266
Author(s):  
Gabrielle Scheffer ◽  
Casey R. J. Hubert ◽  
Dennis R. Enning ◽  
Sven Lahme ◽  
Jaspreet Mand ◽  
...  

Oil reservoirs can represent extreme environments for microbial life due to low water availability, high salinity, high pressure and naturally occurring radionuclides. This study investigated the microbiome of saline formation water samples from a Gulf of Mexico oil reservoir. Metagenomic analysis and associated anaerobic enrichment cultures enabled investigations into metabolic potential for microbial activity and persistence in this environment given its high salinity (4.5%) and low nutrient availability. Preliminary 16S rRNA gene amplicon sequencing revealed very low microbial diversity. Accordingly, deep shotgun sequencing resulted in nine metagenome-assembled genomes (MAGs), including members of novel lineages QPJE01 (genus level) within the Halanaerobiaceae, and BM520 (family level) within the Bacteroidales. Genomes of the nine organisms included respiratory pathways such as nitrate reduction (in Arhodomonas, Flexistipes, Geotoga and Marinobacter MAGs) and thiosulfate reduction (in Arhodomonas, Flexistipes and Geotoga MAGs). Genomic evidence for adaptation to high salinity, withstanding radioactivity, and metal acquisition was also observed in different MAGs, possibly explaining their occurrence in this extreme habitat. Other metabolic features included the potential for quorum sensing and biofilm formation, and genes for forming endospores in some cases. Understanding the microbiomes of deep biosphere environments sheds light on the capabilities of uncultivated subsurface microorganisms and their potential roles in subsurface settings, including during oil recovery operations.


2021 ◽  
Author(s):  
Daniel Gittins ◽  
Pierre-Arnaud Desiage ◽  
Natasha Morrison ◽  
Jayne E Rattray ◽  
Srijak Bhatnagar ◽  
...  

The deep biosphere is the largest microbial habitat on Earth and features abundant bacterial endospores1,2. Whereas dormancy and survival at theoretical energy minima are hallmarks of subsurface microbial populations3, the roles of fundamental ecological processes like dispersal and selection in these environments are poorly understood4. Here we combine geophysics, geochemistry, microbiology and genomics to investigate biogeography in the subsurface, focusing on bacterial endospores in a deep-sea setting characterized by thermogenic hydrocarbon seepage. Thermophilic endospores in permanently cold seabed sediments above petroleum seep conduits were correlated with the presence of hydrocarbons, revealing geofluid-facilitated cell migration pathways originating in deep oil reservoirs. Genomes of thermophilic bacteria highlight adaptations to life in anoxic petroleum systems and reveal that these dormant populations are closely related to oil reservoir microbiomes from around the world. After transport out of the subsurface and into the deep-sea, thermophilic endospores re-enter the geosphere by sedimentation. Viable thermophilic endospores spanning the top several metres of the seabed correspond with total endospore counts that are similar to or exceed the global average. Burial of dormant cells enables their environmental selection in sedimentary formations where new petroleum systems establish, completing a geological microbial loop that circulates living biomass in and out of the deep biosphere.


2021 ◽  
Vol 9 (10) ◽  
pp. 2054
Author(s):  
Bing Hu ◽  
Jie-Yu Zhao ◽  
Yong Nie ◽  
Xiao-Yu Qin ◽  
Kai-Duan Zhang ◽  
...  

Utilization of low-cost, environmental-friendly microbial enhanced oil recovery (MEOR) techniques in thermal recovery-processed oil reservoirs is potentially feasible. However, how exogenous microbes facilitate crude oil recovery in this deep biosphere, especially under mesophilic conditions, is scarcely investigated. In this study, a thermal treatment and a thermal recurrence were processed on crude oil collected from Daqing Oilfield, and then a 30-day incubation of the pretreated crude oil at 37 °C was operated with the addition of two locally isolated hydrocarbon-degrading bacteria, Amycolicicoccus subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b, respectively. The pH, surface tension, hydrocarbon profiles, culture-dependent cell densities and taxonomies, and whole and active microbial community compositions were determined. It was found that both A. subflavus DQS3-9A1T and Dietzia sp. DQ12-45-1b successfully induced culture acidification, crude oil bioemulsification, and residual oil sub-fraction alteration, no matter whether the crude oil was thermally pretreated or not. Endogenous bacteria which could proliferate on double heated crude oil were very few. Compared with A. subflavus, Dietzia sp. was substantially more effective at inducing the proliferation of varied species in one-time heated crude oil. Meanwhile, the effects of Dietzia sp. on crude oil bioemulsification and hydrocarbon profile alteration were not significantly influenced by the ploidy increasing of NaCl contents (from 5 g/L to 50 g/L), but the reconstructed bacterial communities became very simple, in which the Dietzia genus was predominant. Our study provides useful information to understand MEOR trials on thermally processed oil reservoirs, and proves that this strategy could be operated by using the locally available hydrocarbon-degrading microbes in mesophilic conditions with different salinity degrees.


2021 ◽  
Author(s):  
Emma Bell ◽  
Tiina Lamminmäki ◽  
Johannes Alneberg ◽  
Chen Qian ◽  
Weili Xiong ◽  
...  

AbstractMicrobial life is widespread in the terrestrial subsurface and present down to several kilometers depth, but the energy sources that fuel metabolism in deep oligotrophic and anoxic environments remain unclear. In the deep crystalline bedrock of the Fennoscandian Shield at Olkiluoto, Finland, opposing gradients of abiotic methane and ancient seawater-derived sulfate create a terrestrial sulfate-methane transition zone (SMTZ). We used chemical and isotopic data coupled to genome-resolved metaproteogenomics to demonstrate active life and, for the first time, provide direct evidence of active anaerobic oxidation of methane (AOM) in a deep terrestrial bedrock. Proteins from Methanoperedens (formerly ANME-2d) are readily identifiable despite the low abundance (≤1%) of this genus and confirm the occurrence of AOM. This finding is supported by 13C-depleted dissolved inorganic carbon. Proteins from Desulfocapsaceae and Desulfurivibrionaceae, in addition to 34S-enriched sulfate, suggest that these organisms use inorganic sulfur compounds as both electron donor and acceptor. Zerovalent sulfur in the groundwater may derive from abiotic rock interactions, or from a non-obligate syntrophy with Methanoperedens, potentially linking methane and sulfur cycles in Olkiluoto groundwater. Finally, putative episymbionts from the candidate phyla radiation (CPR) and DPANN archaea represented a significant diversity in the groundwater (26/84 genomes) with roles in sulfur and carbon cycling. Our results highlight AOM and sulfur disproportionation as active metabolisms and show that methane and sulfur fuel microbial activity in the deep terrestrial subsurface.Significance StatementThe deep terrestrial subsurface remains an environment in which there is limited understanding of the extant microbial metabolisms, despite its reported large contribution to the overall biomass on Earth. It is much less well studied than deep marine sediments. We show that microorganisms in the subsurface are active, and that methane and sulfur provide fuel in the oligotrophic and anoxic subsurface. We also uncover taxonomically and metabolically diverse ultra-small organisms that interact with larger host cells through surface attachment (episymbiosis). Methane and sulfur are commonly reported in terrestrial crystalline bedrock environments worldwide and the latter cover a significant proportion of the Earth’s surface. Thus, methane- and sulfur-dependent microbial metabolisms have the potential to be widespread in the terrestrial deep biosphere.


Geology ◽  
2021 ◽  
Author(s):  
Alexandre Raphael Cabral ◽  
Stephan König ◽  
Benjamin Eickmann ◽  
Michael Brauns ◽  
Miguel Tupinambá ◽  
...  

Platinum-rich nuggets offer an opportunity for understanding how precious metals accumulate. We analyzed the selenium (Se) isotopic composition of Se-rich (102–103 μg g–1) platinum-palladium (Pt-Pd) nuggets from a recent placer deposit in Minas Gerais, Brazil, for which a biogenic origin has been inferred. We obtained Se isotopic values with a relatively narrow range (δ82/76SeNIST3149 = –17.4‰ to –15.4‰ ± 0.2‰, two standard deviations [2 SD]). The Pt-Os age of the nuggets is 181 ± 6 Ma (2 SD). The data indicate that the nuggets did not form in the recent placer deposit, but by replacement of hydrothermal vein minerals at ~70 °C and at least 800 m below the surface. The high abundance and extreme isotopic composition of Se as well as the presence of other biophilic elements like iodine, organic carbon, and nitrogen within the nugget matrix are consistent with a microbial origin. Although abiogenic reduction of Se oxyanions cannot be ruled out, the nuggets plausibly record Se-supported microbial activity in the deep biosphere.


Sign in / Sign up

Export Citation Format

Share Document