Characterization of Soil Organic Matter along an elevation gradient at Stelvio Pass (Italian Alps).

Author(s):  
Roberta Zangrando ◽  
Maria del Carmen Villoslada Hidalgo ◽  
Clara Turetta ◽  
Nicoletta Cannone ◽  
Francesco Malfasi ◽  
...  

<p>Climate Change (CC) has evident impacts on the biotic and abiotic components of ecosystems.</p><p>Soil is the third largest reservoir of carbon, next to the lithosphere and the oceans, and stores approximately 1500 Gt in the top1 m depth.  Even small changes in soil C stocks could have a vast impact on atmospheric CO<sub>2 </sub>concentration. Elevated surface temperature can substantially affect global C budgets and produce positive or negative feedbacks to climate change. Therefore, understanding the response of soil organic carbon (SOC) stocks to warming is of critical importance to evaluate the feedbacks between terrestrial C cycle and climate change.</p><p>In comparison to other ecosystems, the areas at high altitudes and latitudes are the most vulnerable. In permafrost areas of the Northern Hemisphere the CC has already determined an increase in greenhouse gas emissions, shrub vegetation and variation in the composition of microbial communities. While numerous studies have been performed in Arctic, much less numerous are available for high altitude areas. These areas are a quarter of the emerged lands  and have suffered strong impacts from the CC. Mountain permafrost makes up 14% of global permafrost, stores large quantities of organic carbon (SOC), and can release large quantities of CO<sub>2</sub> due to climate change. However, permafrost contribution to the IPCC global budget has not yet been correctly quantified, in particular for ecosystems of prairie and shrubland, which alone could incorporate over 80Pg of C between soil and biomass. In the last decades, the plant component has undergone migration of species to higher altitudes, expansion of shrubs, variations in floristic composition and dominance, variations in area distribution. The expansion of the shrubs accelerates the regression of alpine meadows and snow valleys.</p><p>The sampling activities have been carried out in July and September, from September 2017 to July 2019 in an area near Stelvio Pass (2,758 m a.s.l.) (Italian Central-Eastern Alps) along an altitude gradient.   Two sampling sites located at 2600 m a.s.l. and 2200 m a.s.l. in altitude, corresponding to about 3° C difference in the average annual air temperature were chosen. At the 2600 m site, warming experiments using open-top chambers (OTCs) to investigate how climate warming affects SOC were performed.</p><p>In order to characterize the SOM (Soil Organic Matter), Total carbon (TC), Organic carbon (OC), Total Nitrogen (TN) and Dissolved Organic Carbon (DOC) were determined in soils. TC and TN were determined in biomass. In both soils and biomass were analyzed to quantify the distribution of stable isotopes of C and N, δ<sup>13</sup>C and δ<sup>15</sup>N.</p>

2012 ◽  
Vol 42 (11) ◽  
pp. 1953-1964 ◽  
Author(s):  
Irene Fernandez ◽  
Juan Gabriel Álvarez-González ◽  
Beatríz Carrasco ◽  
Ana Daría Ruíz-González ◽  
Ana Cabaneiro

Forest ecosystems can act as C sinks, thus absorbing a high percentage of atmospheric CO2. Appropriate silvicultural regimes can therefore be applied as useful tools in climate change mitigation strategies. The present study analyzed the temporal changes in the effects of thinning on soil organic matter (SOM) dynamics and on soil CO2 emissions in radiata pine ( Pinus radiata D. Don) forests. Soil C effluxes were monitored over a period of 2 years in thinned and unthinned plots. In addition, soil samples from the plots were analyzed by solid-state 13C-NMR to determine the post-thinning SOM composition and fresh soil samples were incubated under laboratory conditions to determine their biodegradability. The results indicate that the potential soil C mineralization largely depends on the proportion of alkyl-C and N-alkyl-C functional groups in the SOM and on the microbial accessibility of the recalcitrant organic pool. Soil CO2 effluxes varied widely between seasons and increased exponentially with soil heating. Thinning led to decreased soil respiration and attenuation of the seasonal fluctuations. These effects were observed for up to 20 months after thinning, although they disappeared thereafter. Thus, moderate thinning caused enduring changes to the SOM composition and appeared to have temporary effects on the C storage capacity of forest soils, which is a critical aspect under the current climatic change scenario.


2021 ◽  
Author(s):  
Moritz Mohrlok ◽  
Victoria Martin ◽  
Alberto Canarini ◽  
Wolfgang Wanek ◽  
Michael Bahn ◽  
...  

<p>Soil organic matter (SOM) is composed of many pools with different properties (e.g. turnover times) which are generally used in biogeochemical models to predict carbon (C) dynamics. Physical fractionation methods are applied to isolate soil fractions that correspond to these pools. This allows the characterisation of chemical composition and C content of these fractions. There is still a lack of knowledge on how these individual fractions are affected by different climate change drivers, and therefore the fate of SOM remains elusive. We sampled soils from a multifactorial climate change experiment in a managed grassland in Austria four years after starting the experiment to investigate the response of SOM in physical soil fractions to temperature (eT: ambient and elevated by +3°C), atmospheric CO<sub>2</sub>-concentration (eCO<sub>2</sub>: ambient and elevated by +300 ppm) and to a future climate treatment (eT x eCO<sub>2</sub>: +3°C and + 300 ppm). A combination of slaking and wet sieving was used to obtain three size classes: macro-aggregates (maA, > 250 µm), micro-aggregates (miA, 63 µm – 250 µm) and free silt & clay (sc, < 63 µm). In both maA and miA, four different physical OM fractions were then isolated by density fractionation (using sodium polytungstate of ρ = 1.6 g*cm<sup>-3</sup>, ultrasonication and sieving): Free POM (fPOM), intra-aggregate POM (iPOM), silt & clay associated OM (SCaOM) and sand-associated OM (SaOM). We measured C and N contents and isotopic composition by EA-IRMS in all fractions and size classes and used a Pyrolysis-GC/MS approach to assess their chemical composition. For eCO<sub>2</sub> and eT x eCO<sub>2 </sub>plots, an isotope mixing-model was used to calculate the proportion of recent C derived from the elevated CO<sub>2 </sub>treatment. Total soil C and N did not significantly change with treatments.  eCO<sub>2</sub> decreased the relative proportion of maA-mineral-associated C and increased C in fPOM and iPOM. About 20% of bulk soil C was represented by the recent C derived from the CO<sub>2</sub> fumigation treatment. This significantly differed between size classes and density fractions (p < 0.001), which indicates inherent differences in OM age and turnover. Warming reduced the amount of new C incorporated into size classes. We found that each size class and fraction possessed a unique chemical fingerprint, but this was not significantly changed by the treatments. Overall, our results show that while climate change effects on total soil C were not significant after 4 years, soil fractions showed specific effects. Chemical composition differed significantly between size classes and fractions but was unaffected by simulated climate change. This highlights the importance to separate SOM into differing pools, while including changes to the molecular composition might not be necessary for improving model predictions.    </p>


2019 ◽  
Vol 16 (6) ◽  
pp. 1225-1248 ◽  
Author(s):  
Andy D. Robertson ◽  
Keith Paustian ◽  
Stephen Ogle ◽  
Matthew D. Wallenstein ◽  
Emanuele Lugato ◽  
...  

Abstract. Soil organic matter (SOM) dynamics in ecosystem-scale biogeochemical models have traditionally been simulated as immeasurable fluxes between conceptually defined pools. This greatly limits how empirical data can be used to improve model performance and reduce the uncertainty associated with their predictions of carbon (C) cycling. Recent advances in our understanding of the biogeochemical processes that govern SOM formation and persistence demand a new mathematical model with a structure built around key mechanisms and biogeochemically relevant pools. Here, we present one approach that aims to address this need. Our new model (MEMS v1.0) is developed from the Microbial Efficiency-Matrix Stabilization framework, which emphasizes the importance of linking the chemistry of organic matter inputs with efficiency of microbial processing and ultimately with the soil mineral matrix, when studying SOM formation and stabilization. Building on this framework, MEMS v1.0 is also capable of simulating the concept of C saturation and represents decomposition processes and mechanisms of physico-chemical stabilization to define SOM formation into four primary fractions. After describing the model in detail, we optimize four key parameters identified through a variance-based sensitivity analysis. Optimization employed soil fractionation data from 154 sites with diverse environmental conditions, directly equating mineral-associated organic matter and particulate organic matter fractions with corresponding model pools. Finally, model performance was evaluated using total topsoil (0–20 cm) C data from 8192 forest and grassland sites across Europe. Despite the relative simplicity of the model, it was able to accurately capture general trends in soil C stocks across extensive gradients of temperature, precipitation, annual C inputs and soil texture. The novel approach that MEMS v1.0 takes to simulate SOM dynamics has the potential to improve our forecasts of how soils respond to management and environmental perturbation. Ensuring these forecasts are accurate is key to effectively informing policy that can address the sustainability of ecosystem services and help mitigate climate change.


2019 ◽  
Vol 447 (1-2) ◽  
pp. 521-535
Author(s):  
Nina L. Friggens ◽  
Thomas J. Aspray ◽  
Thomas C. Parker ◽  
Jens-Arne Subke ◽  
Philip A. Wookey

Abstract Aims In the Swedish sub-Arctic, mountain birch (Betula pubescens ssp. czerepanovii) forests mediate rapid soil C cycling relative to adjacent tundra heaths, but little is known about the role of individual trees within forests. Here we investigate the spatial extent over which trees influence soil processes. Methods We measured respiration, soil C stocks, root and mycorrhizal productivity and fungi:bacteria ratios at fine spatial scales along 3 m transects extending radially from mountain birch trees in a sub-Arctic ecotone forest. Root and mycorrhizal productivity was quantified using in-growth techniques and fungi:bacteria ratios were determined by qPCR. Results Neither respiration, nor root and mycorrhizal production, varied along transects. Fungi:bacteria ratios, soil organic C stocks and standing litter declined with increasing distance from trees. Conclusions As 3 m is half the average size of forest gaps, these findings suggest that forest soil environments are efficiently explored by roots and associated mycorrhizal networks of B. pubescens. Individual trees exert influence substantially away from their base, creating more uniform distributions of root, mycorrhizal and bacterial activity than expected. However, overall rates of soil C accumulation do vary with distance from trees, with potential implications for spatio-temporal soil organic matter dynamics and net ecosystem C sequestration.


2006 ◽  
Vol 86 (Special Issue) ◽  
pp. 269-280 ◽  
Author(s):  
C. C. Trettin ◽  
R. Laiho ◽  
K. Minkkinen ◽  
J. Laine

Peatlands are carbon-accumulating wetland ecosystems, developed through an imbalance among organic matter production and decomposition processes. Soil saturation is the principal cause of anoxic conditions that constrain organic matter decay. Accordingly, changes in the hydrologic regime will affect the carbon (C) dynamics in forested peatlands. Our objective is to review ecological studies and experiments on managed peatlands that provide a basis for assessing the effects of an altered hydrology on C dynamics. We conclude that climate change influences will be mediated primarily through the hydrologic cycle. A lower water table resulting from altered precipitation patterns and increased atmospheric temperature may be expected to decrease soil CH4 and increase CO2 emissions from the peat surface. Correspondingly, the C balance in forested peatlands is also sensitive to management and restoration prescriptions. Increases in soil CO2 efflux do not necessarily equate with net losses from the soil C pool. While the fundamentals of the C balance in peatlands are well-established, the combined affects of global change stressors and management practices are best considered using process-based biogeochemical models. Long-term studies are needed both for validation and to provide a framework for longitudinal assessments of the peatland C cycle. Key words: Peatland, carbon cycle, methane, forest, wetland.


2018 ◽  
Vol 11 (12) ◽  
pp. 4779-4796 ◽  
Author(s):  
Haicheng Zhang ◽  
Daniel S. Goll ◽  
Stefano Manzoni ◽  
Philippe Ciais ◽  
Bertrand Guenet ◽  
...  

Abstract. Microbial decomposition of plant litter is a crucial process for the land carbon (C) cycle, as it directly controls the partitioning of litter C between CO2 released to the atmosphere versus the formation of new soil organic matter (SOM). Land surface models used to study the C cycle rarely considered flexibility in the decomposer C use efficiency (CUEd) defined by the fraction of decomposed litter C that is retained as SOM (as opposed to be respired). In this study, we adapted a conceptual formulation of CUEd based on assumption that litter decomposers optimally adjust their CUEd as a function of litter substrate C to nitrogen (N) stoichiometry to maximize their growth rates. This formulation was incorporated into the widely used CENTURY soil biogeochemical model and evaluated based on data from laboratory litter incubation experiments. Results indicated that the CENTURY model with new CUEd formulation was able to reproduce differences in respiration rate of litter with contrasting C : N ratios and under different levels of mineral N availability, whereas the default model with fixed CUEd could not. Using the model with flexible CUEd, we also illustrated that litter quality affected the long-term SOM formation. Litter with a small C : N ratio tended to form a larger SOM pool than litter with larger C : N ratios, as it could be more efficiently incorporated into SOM by microorganisms. This study provided a simple but effective formulation to quantify the effect of varying litter quality (N content) on SOM formation across temporal scales. Optimality theory appears to be suitable to predict complex processes of litter decomposition into soil C and to quantify how plant residues and manure can be harnessed to improve soil C sequestration for climate mitigation.


2020 ◽  
Author(s):  
José A. González-Pérez ◽  
Gael Bárcenas.Moreno ◽  
Nicasio T Jiménez-Morillo ◽  
María Colchero-Asensio ◽  
Layla M. San Emeterio ◽  
...  

<p><strong>Keywords: </strong>Soil reaction, analytical pyrolysis, soil respiration, carbon stabilization</p><p>During the last decade, soil organic matter dynamics and its determining factors have received increased attention, mainly due to the evident implication of these parameters in climate change understanding, predictions and possible management. High-mountain soil could be considered as hotspot of climate change dynamic since its high carbon accumulation and low organic matter degradation rates could be seriously altered by slight changes in temperature and rainfall regimes associated to climate change effects. In the particular case of Sierra Nevada National Park, this threat could be even stronger due to its Southern character, although its elevated biodiversity could shed some light on how could we predict and manage climate change in the future.</p><p>In this study, a quantitative and qualitative organic matter characterization was performed and soil microbial activity measured to evaluate the implication of pH and vegetation in soil organic matter dynamics.</p><p>The sampling areas were selected according to vegetation and soil pH; with distinct soil pH (area A with pH<7 and area B with pH>7) and vegetation (high-mountain shrubs and pine reforested area). Soil samples were collected under the influence of several plant species representatives of each vegetation series. Six samples were finally obtained (five replicates each); three were collected in area A under<em> Juniperus communis</em> ssp. Nana (ENE), <em>Genista versicolor</em> (PIO) and <em>Pinus sylvestris</em> (PSI) and other three were collected in area B under<em> Juniperus Sabina</em> (SAB), <em>Astragalus nevadensis</em> (AST) and <em>Pinus sylvestris</em> (PCA).</p><p>Qualitative and quantitative analyses of soil organic matter were made to establish a possible relationship with microbial activity estimated by respiration rate (alkali trap) and fungi-to-bacteria ratio using a plate count method. Soil easily oxidizable organic carbon content was determined by the Walkley-Black method (SOC %) and organic matter amount was estimated by weight loss on ignition (LOI %). Analytical pyrolysis (Py-GC/MS) was used to analyse in detail the soil organic carbon composition.</p><p>Our results showed that the microbial and therefore the dynamics of organic matter is influenced by both, soil pH and soil of organic matter. So that the pH in acidic media prevail as a determining factor of microbial growth over soil organic matter composition conditioned by vegetation.</p><p><strong>Acknowledgement</strong>: Ministerio de Ciencia Innovación y Universidades (MICIU) for INTERCARBON project (CGL2016-78937-R). N.T. Jiménez-Morillo and L. San Emeterio also thanks MICIU for funding FPI research grants (BES-2013-062573 and Ref. BES-2017-07968). Mrs Desiré Monis is acknowledged for technical assistance.</p><p> </p>


Author(s):  
Jialin Chi ◽  
Chonghao Jia ◽  
Wenjun Zhang ◽  
Christine V Putnis ◽  
Lijun Wang

The stability of soil organic matter (SOM) plays a key role in controlling global climate change as soil stores a large amount of organic carbon, compared with other ecological systems....


2021 ◽  
Author(s):  
Gerardo Ojeda ◽  
Hernando García ◽  
Susanne Woche ◽  
Jorg Bachmann ◽  
Georg Guggenberger ◽  
...  

<p><strong>Contextualization</strong>: In 2011, it was published a curious conundrum, which forms the basis of the present study: why, when organic matter is thermodynamically unstable, does it persist in soils, sometimes for thousands of years? The question challenges the idea that the recalcitrant or labile character of soil organic matter (SOM) is a sufficient argument to ensure SOM persistence. Temperature could play an important role in SOM decomposition, especially in tropics. Particularly, tropical dry forest (TDF) represents an important ecosystem with unique biodiversity and fertile soils in Colombia. At present, the increase in population density and consequently, in the demands of energy and arable land, have led to its degradation.</p><p> </p><p><strong>Knowledge gap</strong>: Although the mentioned question was formulated several years ago, it has still to be answered, hence limiting the development of new soil organic carbon (SOC) models or the quantification of its ecosystem services. A key point, in terms of soil carbon storage, is to determine the maximum rate of CO<sub>2</sub> emissions from soils (Rmax). Traditionally, it is considered that Rmax occurs at the 50% of field capacity. Unfortunately, information about the environmental conditions under which this maximum occurs is scarce.</p><p><strong> </strong></p><p><strong>Purpose</strong>: The main objectives of this study were: (a) determine the maximum rate of soil respiration or CO<sub>2</sub> emissions from soil in TDF soils and (b) to estimate the main environmental drivers of maximum SOM decomposition along a temperature gradient (20°, 30°, 40°C) in incubated soils.</p><p><strong> </strong></p><p><strong>Methodology</strong>: Soils pertained to permanent plots were sampled in six different TDF of Colombia. The evolution of CO<sub>2</sub> emissions (monitored by an infrared gas analyser), relative humidity and soil temperature were recorded in time on incubated soils samples. Temperature was maintained constant at 20°C, 30°C and 40°C during soil incubations under soil drying conditions. Additionally, elemental composition (Fe, Ca, O, Al, Si, K, Mg, Na) of SOM and chemical composition of soil organic carbon (SOC: aromatic-C, O-alkyl-C, Aliphatic-C, Phenolic and Ketonic-C) were determined by X-ray photoelectron spectroscopy (XPS).</p><p><strong> </strong></p><p><strong>Results and conclusions</strong>: The majority of TDF soil samples (90.7%) presented that its peak of CO<sub>2</sub> emissions occurs at soil-water contents higher than saturation (0 MPa), at 20°, 30° and 40°C. Clearly, to consider that the maximum soil respiration rate could be observed at the 50% of field capacity, underestimated the real maximum value of carbon mineralization (48-68%.) Globally, increases in the Rmax values corresponded to increases in electrical conductivity, soil desorption rates, total carbon and nitrogen contents, and decreases in bulk density (BD) and aggregate stability. Taking into account the temperature gradient, increments in calcium and aromatic carbon contents corresponded to decrements in Rmax values but only at 30°C and 40°C, respectively. Some authors indicated that at high soil moisture contents, iron reduction could be release protected carbon. However, no significant relation between Fe and Rmax was observed. Consequently, physical and chemical properties related to SOM accessibility and decomposability by microbial activity, were the main drivers and controls of maximum SOM decomposition rates.</p>


2018 ◽  
Author(s):  
Andy D. Robertson ◽  
Keith Paustian ◽  
Stephen Ogle ◽  
Matthew D. Wallenstein ◽  
Emanuele Lugato ◽  
...  

Abstract. Soil organic matter (SOM) dynamics in ecosystem-scale biogeochemical models have traditionally been simulated as immeasurable fluxes between conceptually-defined pools. This greatly limits how empirical data can be used to improve model performance and reduce the uncertainty associated with their predictions of carbon (C) cycling. Recent advances in our understanding of the biogeochemical processes that govern SOM formation and persistence demand a new mathematical model with a structure built around key mechanisms and biogeochemically-relevant pools. Here, we present one approach that aims to address this need. Our new model (MEMS v1.0) is developed upon the Microbial Efficiency-Matrix Stabilization framework which emphasizes the importance of linking the chemistry of organic matter inputs with efficiency of microbial processing, and ultimately with the soil mineral matrix, when studying SOM formation and stabilization. Building on this framework, MEMS v1.0 is also capable of simulating the concept of C-saturation and represents decomposition processes and mechanisms of physico-chemical stabilization to define SOM formation into four primary fractions. After describing the model in detail, we optimize four key parameters identified through a variance-based sensitivity analysis. Optimization employed soil fractionation data from 154 sites with diverse environmental conditions, directly equating mineral-associated organic matter and particulate organic matter fractions with corresponding model pools. Finally, model performance was evaluated using total topsoil (0–20 cm) C data from 8192 forest and grassland sites across Europe. Despite the relative simplicity of the model, it was able to accurately capture general trends in soil C stocks across extensive gradients of temperature, precipitation, annual C inputs and soil texture. The novel approach that MEMS v1.0 takes to simulate SOM dynamics has the potential to improve our forecasts of how soils respond to management and environmental perturbation. Ensuring these forecasts are accurate is key to effectively informing policy that can address the sustainability of ecosystem services and help mitigate climate change.


Sign in / Sign up

Export Citation Format

Share Document