scholarly journals Short-term photovoltaic generation forecasting using multiple heterogenous sources of data based on an analog approach.

Author(s):  
Kevin Bellinguer ◽  
Robin Girard ◽  
Guillaume Bontron ◽  
Georges Kariniotakis

<p><strong>Abstract</strong></p><p>Over the past years, environmental concerns have played a key role in the development of renewable energy sources (RES). In Europe, the installed capacity of photovoltaic (PV) has increased from around 10 GW in 2008 to nearly 119 GW in 2018 [1]. Due to this high penetration rate and the intermittent nature of RES, several challenges appear related to the economic and secure operation of a power system. To overcome these challenges, it is necessary to develop reliable forecasts of RES, and namely of PV production, for the next hours to days to adjust production planning, while intra-hourly forecasts may contribute to optimize operation of storage units coupled to RES plants.</p><p>The aim of this paper is to present a novel spatio-temporal (ST) spot forecasting approach able to use multiple heterogeneous sources of data as inputs to forecast short-term PV production (i.e. from 15 minutes up to a day ahead).</p><p>First, we consider measured production data from nearby power plants as input to forecast the output of a specific PV plant. These data permit to exploit the correlation between the production data of spatially distributed PV sites. The classical ST approach in the literature, based only on this source of data [2], permits to improve predictability for the next few minutes up to 6 hours ahead.</p><p>Then, we extend the model by the use of satellite images (i.e. global horizontal irradiance (GHI)) which provide meaningful spatial information at a larger extent.</p><p>Finally, we consider Numerical Weather Predictions (NWPs) as input, which permit to extend the applicability of the model to day-ahead lead times, so that, overall, the resulting model covers efficiently horizons ranging from a few minutes to day ahead.</p><p>The spatio-temporal relationships being dependent on the particular meteorological situation of the day at hand, we apply an analog ensemble approach, to condition the learning process with historical observations corresponding to similar meteorological situation. We used the analogue approach to select a subset of similar historical situations over which a dynamical calibration of the forecasted model is done, as it was for example suggested by [3,4]. In our paper we extend the analogs ensemble approach by considering geographically distributed observations of the physical variables of interest (as suggested by [4] for hydrological issues) rather than only those at the level of the PV plant.</p><p>The performance of the proposed ST model with heterogeneous inputs is compared with reference models and advanced ones such as the Random Forest model. Historical production data collected from 9 PV plants of CNR are considered. The power units, located in the South-East France, exhibit relevant spatial correlations which make them suitable for the proposed ST model.</p><p> </p><p><strong>References</strong></p><ul><li>[1] IRENA - https://www.irena.org/Statistics/Download-Data</li> <li>[2] Agoua, Girard, Kariniotakis. Short-Term Spatio-Temporal Forecasting of Photovoltaic Power Production. IEEE Transactions on Sustainable Energy , IEEE, 2018, 9 (2), pp. 538 - 546. https://doi.org/10.1109/TSTE.2017.2747765</li> <li>[3] Alessandrini, Delle Monache, Sperati, Cervone. An analog ensemble for short-term probabilistic solar power forecast. Applied Energy, 2015. https://doi.org/10.1016/j.apenergy.2015.08.011</li> <li>[4] Bellier, Bontron, Zin. Using meteorological analogues for reordering postprocessed precipitation ensembles in hydrological forecasting. Water Resources Research, 2017. https://doi.org/10.1002/2017wr021245</li> </ul>

Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2456
Author(s):  
Noman Khan ◽  
Fath U Min Ullah ◽  
Ijaz Ul Haq ◽  
Samee Ullah Khan ◽  
Mi Young Lee ◽  
...  

Renewable energy (RE) power plants are deployed globally because the renewable energy sources (RESs) are sustainable, clean, and environmentally friendly. However, the demand for power increases on a daily basis due to population growth, technology, marketing, and the number of installed industries. This challenge has raised a critical issue of how to intelligently match the power generation with the consumption for efficient energy management. To handle this issue, we propose a novel architecture called ‘AB-Net’: a one-step forecast of RE generation for short-term horizons by incorporating an autoencoder (AE) with bidirectional long short-term memory (BiLSTM). Firstly, the data acquisition step is applied, where the data are acquired from various RESs such as wind and solar. The second step performs deep preprocessing of the acquired data via several de-noising and cleansing filters to clean the data and normalize them prior to actual processing. Thirdly, an AE is employed to extract the discriminative features from the cleaned data sequence through its encoder part. BiLSTM is used to learn these features to provide a final forecast of power generation. The proposed AB-Net was evaluated using two publicly available benchmark datasets where the proposed method obtains state-of-the-art results in terms of the error metrics.


Author(s):  
Harshkumar Patel ◽  
Yogesh Patel

Now-a-days energy planners are aiming to increase the use of renewable energy sources and nuclear to meet the electricity generation. But till now coal-based power plants are the major source of electricity generation. Disadvantages of coal-based thermal power plants is disposal problem of fly ash and pond ash. It was earlier considered as a total waste and environmental hazard thus its use was limited, but now its useful properties have been known as raw material for various application in construction field. Fly ash from the thermal plants is available in large quantities in fine and coarse form. Fine fly ash is used in construction industry in some amount and coarse fly ash is subsequently disposed over land in slurry forms. In India around 180 MT fly is produced and only around 45% of that is being utilized in different sectors. Balance fly ash is being disposed over land. It needs one acre of land for ash disposal to produce 1MW electricity from coal. Fly ash and pond ash utilization helps to reduce the consumption of natural resources. The fly ash became available in coal based thermal power station in the year 1930 in USA. For its gainful utilization, scientist started research activities and in the year 1937, R.E. Davis and his associates at university of California published research details on use of fly ash in cement concrete. This research had laid foundation for its specification, testing & usages. This study reports the potential use of pond-ash and fly-ash as cement in concrete mixes. In this present study of concrete produced using fly ash, pond ash and OPC 53 grade will be carried. An attempt will be made to investigate characteristics of OPC concrete with combined fly ash and pond ash mixed concrete for Compressive Strength test, Split Tensile Strength test, Flexural Strength test and Durability tests. This paper deals with the review of literature for fly-ash and pond-ash as partial replacement of cement in concrete.


Author(s):  
O. M. Salamov ◽  
F. F. Aliyev

The paper discusses the possibility of obtaining liquid and gaseous fuels from different types of biomass (BM) and combustible solid waste (CSW) of various origins. The available world reserves of traditional types of fuel are analyzed and a number of environmental shortcomings that created during their use are indicated. The tables present the data on the conditional calorific value (CCV) of the main traditional and alternative types of solid, liquid and gaseous fuels which compared with CCV of various types of BM and CSW. Possible methods for utilization of BM and CSW are analyzed, as well as the methods for converting them into alternative types of fuel, especially into combustible gases.Reliable information is given on the available oil and gas reserves in Azerbaijan. As a result of the research, it was revealed that the currently available oil reserves of Azerbaijan can completely dry out after 33.5 years, and gas reserves–after 117 years, without taking into account the growth rates of the exported part of these fuels to European countries. In order to fix this situation, first of all it is necessary to use as much as possible alternative and renewable energy sources, especially wind power plants (WPP) and solar photovoltaic energy sources (SFES) in the energy sector of the republic. Azerbaijan has large reserves of solar and wind energy. In addition, all regions of the country have large reserves of BM, and in the big cities, especially in industrial ones, there are CSW from which through pyrolysis and gasification is possible to obtain a high-quality combustible gas mixture, comprising: H2 + CO + CH4, with the least amount of harmful waste. The remains of the reaction of thermochemical decomposition of BM and CSW to combustible gases can also be used as mineral fertilizers in agriculture. The available and projected resources of Azerbaijan for the BM and the CSW are given, as well as their assumed energy intensity in the energy sector of the republic.Given the high energy intensity of the pyrolysis and gasification of the BM and CSW, at the present time for carrying out these reactions, the high-temperature solar installations with limited power are used as energy sources, and further preference is given to the use of WPP and SFES on industrial scale.


Author(s):  
Александр Григорьевич Комков ◽  
Александр Константинович Сокольский

В статье рассмотрено современное состояние энергоснабжения и перспективы развития альтернативных источников энергии на территории Крайнего Севера. Отмечено, что несмотря на острую потребность во внедрении возобновляемых источников энергии, установленные мощности всех ветряных и солнечных электростанций в регионе не превышают 7-8 МВт. Также в работе рассчитаны технический и экономический потенциал ветровой энергии региона, на основании которых подобрана наиболее эффективная установка. The article discusses the current state of energy supply and the prospects for the development of alternative energy sources in the Far North. It is noted that despite the urgent need for the introduction of renewable energy sources, the installed capacities of all wind and solar power plants in the region do not exceed 7-8 MW. Also, the technical and economic potential of the region’s wind energy was calculated based on which the most efficient installation was selected.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 172859-172868
Author(s):  
Zhengwei Ma ◽  
Sensen Guo ◽  
Gang Xu ◽  
Saddam Aziz

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3860
Author(s):  
Priyanka Shinde ◽  
Ioannis Boukas ◽  
David Radu ◽  
Miguel Manuel de Manuel de Villena ◽  
Mikael Amelin

In recent years, the vast penetration of renewable energy sources has introduced a large degree of uncertainty into the power system, thus leading to increased trading activity in the continuous intra-day electricity market. In this paper, we propose an agent-based modeling framework to analyze the behavior and the interactions between renewable energy sources, consumers and thermal power plants in the European Continuous Intra-day (CID) market. Additionally, we propose a novel adaptive trading strategy that can be used by the agents that participate in CID market. The agents learn how to adapt their behavior according to the arrival of new information and how to react to changing market conditions by updating their willingness to trade. A comparative analysis was performed to study the behavior of agents when they adopt the proposed strategy as opposed to other benchmark strategies. The effects of unexpected outages and information asymmetry on the market evolution and the market liquidity were also investigated.


2021 ◽  
Vol 11 (5) ◽  
pp. 2410
Author(s):  
Nakisa Farrokhseresht ◽  
Arjen A. van der Meer ◽  
José Rueda Torres ◽  
Mart A. M. M. van der Meijden

The grid integration of renewable energy sources interfaced through power electronic converters is undergoing a significant acceleration to meet environmental and political targets. The rapid deployment of converters brings new challenges in ensuring robustness, transient stability, among others. In order to enhance transient stability, transmission system operators established network grid code requirements for converter-based generators to support the primary control task during faults. A critical factor in terms of implementing grid codes is the control strategy of the grid-side converters. Grid-forming converters are a promising solution which could perform properly in a weak-grid condition as well as in an islanded operation. In order to ensure grid code compliance, a wide range of transient stability studies is required. Time-domain simulations are common practice for that purpose. However, performing traditional monolithic time domain simulations (single solver, single domain) on a converter-dominated power system is a very complex and computationally intensive task. In this paper, a co-simulation approach using the mosaik framework is applied on a power system with grid-forming converters. A validation workflow is proposed to verify the co-simulation framework. The results of comprehensive simulation studies show a proof of concept for the applicability of this co-simulation approach to evaluate the transient stability of a dominant grid-forming converter-based power system.


2008 ◽  
Vol 37 (S5) ◽  
pp. S-8-S-24 ◽  
Author(s):  
Dennis L. Corwin ◽  
Scott M. Lesch ◽  
James D. Oster ◽  
Stephen R. Kaffka

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3296
Author(s):  
Carlos García-Santacruz ◽  
Luis Galván ◽  
Juan M. Carrasco ◽  
Eduardo Galván

Energy storage systems are expected to play a fundamental part in the integration of increasing renewable energy sources into the electric system. They are already used in power plants for different purposes, such as absorbing the effect of intermittent energy sources or providing ancillary services. For this reason, it is imperative to research managing and sizing methods that make power plants with storage viable and profitable projects. In this paper, a managing method is presented, where particle swarm optimisation is used to reach maximum profits. This method is compared to expert systems, proving that the former achieves better results, while respecting similar rules. The paper further presents a sizing method which uses the previous one to make the power plant as profitable as possible. Finally, both methods are tested through simulations to show their potential.


Sign in / Sign up

Export Citation Format

Share Document