strength test
Recently Published Documents


TOTAL DOCUMENTS

1134
(FIVE YEARS 375)

H-INDEX

32
(FIVE YEARS 5)

Author(s):  
Indrayani Indrayani ◽  
Lina Flaviana Tilik ◽  
Djaka Suhirkam ◽  
Suhadi Suhadi ◽  
Muhammad Prawira Wardana ◽  
...  

Currently, innovation continues to be developed to replace cement with other materials so that the use of cement as a building material can be reduced. Utilization of coal waste (fly ash) is an alternative to subtitude cement. From previous studies, fly ash mixed with alkaline materials in the form of NaOH and Na2SiO3 in a ratio of 1:5 can produce geopolymer concrete. This geopolymer concrete research was continued by adding bendrat wire fibers into the geopolymer concrete mixture. The method used in testing the aggregate, testing the compressive strength of normal concrete K225, testing the flexural strength of normal concrete and geopolymer concrete refers to SNI. Another additional material that is mixed is bendrat wire fiber. The research was carried out in the form of making flexible beams of 10 cm x 10 cm x 50 cm with fiber variations of 0%, 0.5%, and 1,0% at the age of 14 and 28 days. The results of the flexural strength test of the BN beam at the age of 28 days can withstand loads than BG. The average flexural strength obtained with variations of BN, BN+SB 0.5% and BN+SB 1.0% respectively were 2.796 MPa, 3.113 MPa, and 3.879 MPa. The results of testing the average flexural strength of geopolymer concrete beams at 28 days, obtained variations of BG, BG+SB 0.5%, and BG+SB 1.0% respectively were 0 MPa, 0.055 MPa and 0.104 MPa. In addition, geopolymer concrete cannot be used as a beam and the addition of bendrat wire fiber to geopolymer concrete cannot withstand the tensile load on the concrete.


Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Yan Tan ◽  
Ziling Xu ◽  
Zeli Liu ◽  
Jiuhong Jiang

To improve the mechanical properties and frost resistance of concrete, silica fume, and polyvinyl alcohol fiber compounded in concrete. The mechanical and frost resistance of concrete were comprehensively analyzed and evaluated for strength change, mass loss, and relative dynamic elastic modulus change by compressive strength test, flexural strength test, and rapid freeze-thaw test. The results showed that with the incorporation of silica fume and polyvinyl alcohol fiber, the compressive and flexural strengths of concrete were improved, and the decrease in mass loss rate and relative dynamic elastic modulus of concrete after freeze-thaw cycles were significantly reduced, which indicated that the compounding of silica fume and polyvinyl alcohol fiber improved the frost resistance of concrete. When the content of silica fume was 10% and the volume content of polyvinyl alcohol fiber was 1%, the comprehensive mechanical performance and frost resistance of concrete is the best. The compressive strength increased by 26.6% and flexural strength increased by 29.17% compared to ordinary concrete. Based on the test data, to study the macroscopic damage evolution of concrete compound silica fume and polyvinyl alcohol fiber under repeated freeze-thaw conditions. The Weibull distribution probability model and GM (1, 1) model were established. The average relative errors between the predicted and actual data of the two models are small and very close. It is shown that both models can reflect well the development of concrete damage under a freeze-thaw environment. This provides an important reference value and theoretical basis for the durability evaluation and life prediction of compound silica fume and polyvinyl alcohol fiber concrete in cold regions.


2022 ◽  
Vol 961 (1) ◽  
pp. 012082
Author(s):  
Taghreed Abd-Almahdee Musa ◽  
Hiba Ali Abbas ◽  
Ayam Jabbar Jihad

Abstract This study includes the effect of using different dosages of integral waterproof Admixture and silica fume on some mechanical properties of concrete. Concrete improved by using different ratios of integral water proof admixture(IWP admixture) to increase strength and durability, this admixture used as percentages from cement weight in each mix ranged from 0.0% to 2% ( 0.0, 1.0%, 1.2%,1.4%,1.6%,1.8%, and 2%), compressive strength test done for cubes with (10*10*10) cm for each mix. The flexural strength test was done by (10*10*40) cm beams and tested after 28 days of curing. comparison study was made between silica fume mixes properties and mixes without silica fume. Adding IWP admixture leads to increase mechanical properties of ordinary concrete, the reference mix shows compressive strength equal to 26.38 MPa, while mixes with 2% IWP gives 38.8 MPa in this study. The study also includes the effect of using 2 main dosages of silica fume to the mixes that contain IWP, the new concrete with two admixtures show better values of compressive, tensile and flexural strength comparing with mixes with only IWP, the compressive strength increased from 38.8 MPa for ordinary IWP mixes to 52.3 MPa for 10% silica fume concrete mixes, and also the flexural strength increased from 4.8 MPa for mixes with only IWP to 7.3 MPa for mixes modified with 10 % silica fume. Study include also using waste glass as fine aggregate in mixes contain IWP and 10% silica fume and that show more increment in mechanical properties also.


2021 ◽  
Vol 15 (2) ◽  
pp. 44-58
Author(s):  
Leliek Agung Haldoko

Wood is a hygroscopic organic material, prone to damage and weathering, especially by humidity. The moisture in the wood will trigger biotic activities such as fungus, which can decompose of wood materials, that is, cellulose. Moreover, wood is susceptible to insect attacks such as termites. This condition will cause the wood to become brittle so that the strength of the wood will decrease. To strengthen brittle wood, consolidation treatments are needed. Material for wood consolidation that has been used is Paraloid B72 with acetone solvent, which is not easy to find everywhere Materials tested for wood artifacts consolidations were shellac and gelatin with a concentration of 5%, 7,5%, and 10%. As a comparison, the material used for wood consolidation is Paraloid B72 10%. Test parameters used include SEM test, density test, compressive strength test, color change test, fungal growth observation, and FTIR test. Test results have shown that shellac 7,5% and 10% can be an alternative to Paraloid B72 as a wood artifacts consolidation material. Shellac 7,5% is the optimum concentration for wood artifacts consolidation because materials will be more efficient. This material can fill the wood pores and increase the density by 13,89%. The resulting compressive strength value reached 248,01 kg/cm2 or increased by 43,18%, higher than Paraloid B72 10%. Shellac 7,5% does not change the color of the wood and safe from fungal growth when applied to wood. This material also does not change the chemical composition of wood. Keywords: wood, artifact, consolidation, shellac, gelatin, Paraloid B72


Author(s):  
Katarzyna J. SARZYŃSKA ◽  
Robert PASZKOWSKI

The purpose of this paper was to determine the mechanical properties of a Ti-6Al-4V titanium alloy produced by traditional CIP (Cold Isostatic Pressing) and by LENS (Laser Engineered Net Shaping), an additive manufacturing process. A reference material, being a commercial Ti-6Al-4V alloy, was also tested. The strength test specimens were produced from a high-quality, Grade 5 titanium powder. Each specimen had its density, porosity, and hardness determined. Compression curves were plotted for the tested materials from the strength test results with static and dynamic loads. These tests were performed on an UTS (Universal Testing Machine) and an SHPB (Split Hopkinson Pressure Bar) stand. The test results obtained led to the conclusion that the titanium alloy produced by CIP had lower strength performance parameters than its commercially-sourced counterpart. The LENS-produced specimens outperformed the commercially-sourced alloy both in static and dynamic load conditions.


2021 ◽  
Vol 2 (2) ◽  
pp. 69-73
Author(s):  
Haryati Wahyu Kusuma Pertiwi1 ◽  
Susilawati ◽  
Suharno

Abstract. Cockroaches are one of the insects that can spread diseases such as dysentery, diarrhea, cholera, viral hepatitis. Therefore an insecticide that is safe for the environment is needed, one of which is areca seed (Areca caechu L.) which contains Polyphenols, Flavonoids, Tanins, and Alkaloids that are safe for the surrounding environment and do not leave high residues. The purpose of this study was to analyze the strength test to kill areca seed extract (Areca catechu L.) against cockroach populations. The research design used in this research is quasi experimental (Quasi Experimental), the sample in this study used 360 adult cockroaches (Periplaneta americana) measuring 3 cm. This study used the Mann-Whitney U test analysis to analyze the differences in the ability of areca seed extract (Areca catechu L.) in killing cockroach populations. The results showed that at a concentration of 100% it was more effective to kill cockroaches Periplaneta americana type because it can kill 91% of American perennial cockroaches within 24 hours. The conclusion of this study is that there are differences in concentration of areca catechu L. extract with variations of 80%, 90%, 100% where p = 0.000.


2021 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Mazhar Hussain ◽  
Daniel Levacher ◽  
Léo Saouti ◽  
Nathalie Leblanc ◽  
Hafida Zmamou ◽  
...  

Earth bricks are a traditional eco-friendly construction material. In this study, harbor-dredged sediments were used along with hemp shiv to develop a brick manufacturing procedure and compaction techniques to produce durable earth bricks for the valorization of waste hemp shiv and dredged sediments. Prismatic specimens of size 4 × 4 × 16 cm3 were manufactured with Dunkirk sediments after analyzing their suitability for earth bricks according to the French standard for flexural strength test to observe the indirect tensile strength and impact of the compaction techniques on the strength of bricks. Crude bricks were manufactured with varying hemp shiv content from 0% to 5% by mass. Compaction techniques such as dynamic compaction, static compaction, and tamping were applied. The effect of hemp shiv content and compaction techniques was evaluated with a flexural strength test and the distribution of fibers in bricks. Grain size analysis of sediments with French and Spanish standards shows that the sediments granulometry is suitable for earth bricks. The flexural strength testing of bricks indicates that bricks with saturated hemp shiv have higher flexural strength. Earth bricks have maximum strength with dynamic compaction with 1% hemp shiv, which satisfies the adobe bricks tensile strength requirements that vary from 0.012 to 0.025 MPa (NZS 4298, 1998; NORMA E.080 (2017).


2021 ◽  
Vol 1 (1) ◽  
pp. 414-425
Author(s):  
KRT Nur Suhascaryo ◽  
Endah Wahyurini ◽  
Yuan Cahyo Guntoro

Shale is one of the rocks that often causes drilling problems because shale tends to swell or swell when in contact with mud filtrate, mainly water-based or Water-base Mud (WBM). This study aims to determine how the performance of Oil-base Mud (OBM) based on Crude Coconut Oil (CCO) in overcoming the swelling problem. The methodology used consists of drilling simulation and cutting analysis in the X-Ray Diffraction (XRD) laboratory. The series of activities in the study began with the preparation of rock layers, followed by testing the penetration rate using Water-base Mud as a comparison. After cutting analysis was carried out in the XRD laboratory of UPN "Veteran" Yogyakarta with the Rigaku tool, then replaced the type of drilling fluid Oil-base Mud with basic materials alternative to Crude Coconut Oil (CCO) and followed by a penetration test. Rate of Penetration (ROP) test results from WBM with Rheology 1 at interval depth of 1.64 ft-3.28 ft is 442.8 ft/h, Rheology 2 at interval depth of 4.92-6.5 ft is 118.5 ft/hr on the first day. Swelling occurred and results in pipe sticking at depth of 3.28 and 6.5 ft. Based on the Bulk Mineral analysis, clay mineral content is 23.84%. Based on the Clay Oriented, smectite dominates the clay by 29.09%. Based on MBT, shale belongs to class B (illite and mixed-layer montmorillonite illite), where this mineral can expand. Based on a Geonor As test, 5.18% of the cutting can develop when exposed to water. The drilling fluid was replaced with Oil-base Mud based on alternative Crude Coconut Oil (CCO), and obtained ROP Rheology 1 at Interval depth of 3.28 ft-4.92 ft is 492 ft/h and Rheology 2 at Interval depth of 6.5 ft-10.5 ft is 480 ft/h. The results of the Compressive Strength test interval A on the first, third, and fifth days were 31,699 psi, 42,265 psi, and 52,831 psi. The results of the Compressive Strength test interval B on the first, second, and third days were 31,496 psi, 41,517 psi, and 52,971 psi. Based on clay mineral analysis and magnitude of ROP value, is known that Crude Coconut Oil (CCO) based Oil-base Mud is effective because during the simulation, there are no drilling problems, and the resulting ROP value is greater than the first day Water-base Mud.


UKaRsT ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 220
Author(s):  
Bobby Damara ◽  
Sugeng Dwi Hartantyo

Replacing the main material using unused materials such as hazardous waste can be utilized in concrete innovation. One of the hazardous wastes that can utilize the waste generated from the acetylene welding process. The waste has hardening properties when exposed to water. Its properties are almost the same as cement can replace or add part of the cement mixture. Conducted this research was to determine the effect of using carbide waste from the acetylene welding process on the flexural strength of concrete. The experimental method is carried out by making test objects in the laboratory. The proportions of waste added were 7%, 10%, and 12% by weight of cement. The test object used is in the form of a beam with dimensions of 60 cm x 15 cm x 15 cm. The planned initial quality is concrete F'c 14.5 MPa (K175). The flexural strength test was carried out at the age of 27 days of concrete. From the results of the research carried out, it is found that the use of carbide waste from the acetylene welding process has not been able to improve the quality of concrete significantly. The highest flexural strength was obtained from waste at 7%, with a flexural strength value of 9.692 Mpa. So from these results, it can be used as a reference in the utilization of carbide waste from the acetylene welding process.


Sign in / Sign up

Export Citation Format

Share Document