The Solaris Solar Polar Mission

Author(s):  
Donald M. Hassler ◽  
Jeff Newmark ◽  
Sarah Gibson ◽  
Louise Harra ◽  
Thierry Appourchaux ◽  
...  

<p>The solar poles are one of the last unexplored regions of the solar system. Although Ulysses flew over the poles in the 1990s, it did not have remote sensing instruments onboard to probe the Sun’s polar magnetic field or surface/sub-surface flows.</p><p>We will discuss Solaris, a proposed Solar Polar MIDEX mission to revolutionize our understanding of the Sun by addressing fundamental questions that can only be answered from a polar vantage point. Solaris uses a Jupiter gravity assist to escape the ecliptic plane and fly over both poles of the Sun to >75 deg. inclination, obtaining the first high-latitude, multi-month-long, continuous remote-sensing solar observations. Solaris will address key outstanding, breakthrough problems in solar physics and fill holes in our scientific understanding that will not be addressed by current missions.</p><p>With focused science and a simple, elegant mission design, Solaris will also provide enabling observations for space weather research (e.g. polar view of CMEs), and stimulate future research through new unanticipated discoveries.</p>

1990 ◽  
Vol 138 ◽  
pp. 469-487
Author(s):  
Oddbj⊘rn Engvold

The requirements and conditions for high resolution imaging and polarimetry of the Sun are reviewed. Various methods and techniques are discussed for image stabilization and sharpening in solar observations. The new solar facilities in the Canary Islands in particular are frequently reaching diffraction limited resolution and yield new insight in the structure and dynamics of the solar atmosphere. Future ground based telescopes like THEMIS and LEST, as well as planned solar missions in space will trigger a next advance in solar physics.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Sean Fritz ◽  
Kamran Turkoglu

This paper discusses the creation of a genetic algorithm to locate and optimize interplanetary trajectories using gravity assist maneuvers to improve fuel efficiency of the mission. The algorithm is implemented on two cases: (i) a Centaur-class target close to the ecliptic plane and (ii) a Centaur-class target with a high inclination to the ecliptic plane. Cases for multiple numbers of flybys (up to three) are discussed and compared. It is shown that, for the targets considered here, a single flyby of Jupiter is the most efficient trajectory to either target with the conditions and limitations discussed in this paper. In this paper, we also iterate on possible reasons for certain results seen in the analysis and show how these previously observed behaviors could be present in any trajectory found. The parameters and methods used in the algorithm are explained and justified over multiple real-life interplanetary missions to provide deeper insights into the development choices.


2010 ◽  
Vol 6 (S274) ◽  
pp. 284-286
Author(s):  
Marian Karlický ◽  
Miroslav Bárta

AbstractThe ALMA (Atacama Large Millimeter/sub-millimeter Array) is the large interferometer that will consist up to 64 high-precision antennas operating in the 31.3 – 950 GHz frequency range. In this range unique observations in cosmology, cold universe, galaxies, stars and their formations, and so on are expected. Among these objectives there is a unique possibility to observe the Sun and to address outstanding issues of solar physics. The ALMA is shortly described and then the new ESO-ALMA European node (ARC) built at Ondřejov Observatory is presented. The new ARC is the only one in Europe oriented to solar physics. The requirements and limitations for ALMA solar observations, as well as some examples of possible solar-oriented ALMA projects, are mentioned.


Author(s):  
A. Bemporad

After the launch of STEREO twin spacecraft, and most recently of Solar Orbiter and Parker Solar Probe spacecraft, the next mission that will explore Sun-Earth interactions and how the Sun modulates the Heliosphere will be the “Lagrange” mission, which will consist of two satellites placed in orbit around L1 and L5 Sun-Earth Lagrangian points. Despite the significant novelties that will be provided by such a double vantage point, there will be also missing information, that are briefly discussed here. For future heliospheric missions, an alternative advantageous approach that has not been considered so far would be to place two twin spacecraft not in L1 and L5, but in L4 and L5 Lagrangian points. If these two spacecraft will be equipped with in situ instruments, and also remote sensing instruments measuring not only photospheric but also coronal magnetic fields, significant advancing will be possible. In particular, data provided by such a twin mission will allow to follow the evolution of magnetic fields from inside the Sun (with stereoscopic helioseismology), to its surface (with classical photospheric magnetometers), and its atmosphere (with spectro-polarimeters); this will provide a tremendous improvement in our physical understanding of solar activity. Moreover, the L4-L5 twin satellites will take different interesting configurations, such as relative quadrature, and quasi-quadrature with the Earth, providing a baseline for monitoring the Sun-to-Earth propagation of solar disturbances.


2020 ◽  
Vol 642 ◽  
pp. A1 ◽  
Author(s):  
D. Müller ◽  
O. C. St. Cyr ◽  
I. Zouganelis ◽  
H. R. Gilbert ◽  
R. Marsden ◽  
...  

Aims. Solar Orbiter, the first mission of ESA’s Cosmic Vision 2015–2025 programme and a mission of international collaboration between ESA and NASA, will explore the Sun and heliosphere from close up and out of the ecliptic plane. It was launched on 10 February 2020 04:03 UTC from Cape Canaveral and aims to address key questions of solar and heliospheric physics pertaining to how the Sun creates and controls the Heliosphere, and why solar activity changes with time. To answer these, the mission carries six remote-sensing instruments to observe the Sun and the solar corona, and four in-situ instruments to measure the solar wind, energetic particles, and electromagnetic fields. In this paper, we describe the science objectives of the mission, and how these will be addressed by the joint observations of the instruments onboard. Methods. The paper first summarises the mission-level science objectives, followed by an overview of the spacecraft and payload. We report the observables and performance figures of each instrument, as well as the trajectory design. This is followed by a summary of the science operations concept. The paper concludes with a more detailed description of the science objectives. Results. Solar Orbiter will combine in-situ measurements in the heliosphere with high-resolution remote-sensing observations of the Sun to address fundamental questions of solar and heliospheric physics. The performance of the Solar Orbiter payload meets the requirements derived from the mission’s science objectives. Its science return will be augmented further by coordinated observations with other space missions and ground-based observatories.


The International Solar Polar Mission (I. S. P. M. ), originally known as the Out-of-Ecliptic Mission, will be the first spacecraft mission to explore the third dimension of the heliosphere within a few astronomical units of the Sun and to view the Sun over the full range of heliographic latitudes. Its main objectives are to investigate, as a function of solar latitude, the properties of the interplanetary medium and the solar corona. The I. S. P. M. is a two spacecraft venture jointly conducted by E. S. A. and N. A. S. A. The two spacecraft will be injected into elliptical heliocentric orbits approximately at right angles to the ecliptic plane, by using the Jupiter gravity assist method, one northwards and the other southwards. After passing nearly above the poles of the Sun, each spacecraft crosses the ecliptic plane and passes over the other solar pole. The complete mission time from launch, foreseen for February 1983, to the second polar passage is approximately 4⅔ years. This paper summarizes the main scientific objectives of the instruments to be carried on this exploratory mission. It concludes with an outline of the payload, the spacecraft, the trajectory and the mission schedule.


1984 ◽  
Vol 86 ◽  
pp. 155-158 ◽  
Author(s):  
Giancarlo Noci

In the past years several space missions have been proposed for the study of the Sun and of the Heliosphere. These missions were intended to clarify various different aspects of solar physics. For example, the GRIST (Grazing Incidence Solar Telescope) mission was intended as a means to improve our knowledge of the upper transition region and low corona through the detection of the solar EUV spectrum with a spatial resolution larger than in previous missions; the DISCO (Dual Spectral Irradiance and Solar Constant Orbiter) and SDO (Solar Dynamics Observatory) missions were proposed to gat observational data about the solar oscillations better than those obtained from ground based instruments; the SOHO (Solar and Heliospheric Observatory) mission was initially proposed to combine the properties of GRIST with the study of the extended corona (up to several radii of heliocentric distance) by observing the scattered Ly-alpha and OVI radiation, which was also the basis of the SCE (Solar Corona Explorer) mission proposal; the development of the interest about the variability of the Sun, both in itself and for its consequences in the history of the Earth, led to propose observations of the solar constant (included in DISCO).


2021 ◽  
Vol 13 (9) ◽  
pp. 1818
Author(s):  
Lisha Ding ◽  
Lei Ma ◽  
Longguo Li ◽  
Chao Liu ◽  
Naiwen Li ◽  
...  

Flash floods are among the most dangerous natural disasters. As climate change and urbanization advance, an increasing number of people are at risk of flash floods. The application of remote sensing and geographic information system (GIS) technologies in the study of flash floods has increased significantly over the last 20 years. In this paper, more than 200 articles published in the last 20 years are summarized and analyzed. First, a visualization analysis of the literature is performed, including a keyword co-occurrence analysis, time zone chart analysis, keyword burst analysis, and literature co-citation analysis. Then, the application of remote sensing and GIS technologies to flash flood disasters is analyzed in terms of aspects such as flash flood forecasting, flash flood disaster impact assessments, flash flood susceptibility analyses, flash flood risk assessments, and the identification of flash flood disaster risk areas. Finally, the current research status is summarized, and the orientation of future research is also discussed.


2020 ◽  
Vol 12 (24) ◽  
pp. 4190
Author(s):  
Siyamthanda Gxokwe ◽  
Timothy Dube ◽  
Dominic Mazvimavi

Wetlands are ranked as very diverse ecosystems, covering about 4–6% of the global land surface. They occupy the transition zones between aquatic and terrestrial environments, and share characteristics of both zones. Wetlands play critical roles in the hydrological cycle, sustaining livelihoods and aquatic life, and biodiversity. Poor management of wetlands results in the loss of critical ecosystems goods and services. Globally, wetlands are degrading at a fast rate due to global environmental change and anthropogenic activities. This requires holistic monitoring, assessment, and management of wetlands to prevent further degradation and losses. Remote-sensing data offer an opportunity to assess changes in the status of wetlands including their spatial coverage. So far, a number of studies have been conducted using remotely sensed data to assess and monitor wetland status in semi-arid and arid regions. A literature search shows a significant increase in the number of papers published during the 2000–2020 period, with most of these studies being in semi-arid regions in Australia and China, and few in the sub-Saharan Africa. This paper reviews progress made in the use of remote sensing in detecting and monitoring of the semi-arid and arid wetlands, and focuses particularly on new insights in detection and monitoring of wetlands using freely available multispectral sensors. The paper firstly describes important characteristics of wetlands in semi-arid and arid regions that require monitoring in order to improve their management. Secondly, the use of freely available multispectral imagery for compiling wetland inventories is reviewed. Thirdly, the challenges of using freely available multispectral imagery in mapping and monitoring wetlands dynamics like inundation, vegetation cover and extent, are examined. Lastly, algorithms for image classification as well as challenges associated with their uses and possible future research are summarised. However, there are concerns regarding whether the spatial and temporal resolutions of some of the remote-sensing data enable accurate monitoring of wetlands of varying sizes. Furthermore, it was noted that there were challenges associated with the both spatial and spectral resolutions of data used when mapping and monitoring wetlands. However, advancements in remote-sensing and data analytics provides new opportunities for further research on wetland monitoring and assessment across various scales.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3926
Author(s):  
Juping Liu ◽  
Shiju Wang ◽  
Xin Wang ◽  
Mingye Ju ◽  
Dengyin Zhang

Remote sensing (RS) is one of the data collection technologies that help explore more earth surface information. However, RS data captured by satellite are susceptible to particles suspended during the imaging process, especially for data with visible light band. To make up for such deficiency, numerous dehazing work and efforts have been made recently, whose strategy is to directly restore single hazy data without the need for using any extra information. In this paper, we first classify the current available algorithm into three categories, i.e., image enhancement, physical dehazing, and data-driven. The advantages and disadvantages of each type of algorithm are then summarized in detail. Finally, the evaluation indicators used to rank the recovery performance and the application scenario of the RS data haze removal technique are discussed, respectively. In addition, some common deficiencies of current available methods and future research focus are elaborated.


Sign in / Sign up

Export Citation Format

Share Document