Li and B diffusivity in hydrated silicate melts: an experimental study

Author(s):  
Roberta Spallanzani ◽  
Sarah B. Cichy ◽  
Marcus Oelze ◽  
Kenneth Koga ◽  
Max Wilke ◽  
...  

<p>Magmatic volatiles play a major role in controlling magma dynamics, such as ascent characteristics and eruption style. In order to fully understand their influence in magmatic systems, it is crucial to examine their behaviour within silicate melts. Although numerous studies have been conducted on volatile solubility, exsolution and degassing, some aspects of  magma degassing such as bubble formation, bubble growth and the affect on the distribution of fluid-mobile elements are poorly understood. For instance, magma degassing is likely to affect the abundance and dispersion of fluid-mobile elements, such as Li and B, in the magma. Thus, this study focuses on the diffusivity of Li and B in hydrated silicate melt as a proxy for degassing processes.</p><p>Lithium and boron are particularly suitable as geochemical tracers of degassing processes because they are light elements, present in natural volcanic systems in low concentrations, and have similar characteristics: both elements are fluid-mobile and each has two stable isotopes with different transport behaviours due to their atomic weights, which can lead to isotope fractionation. In order to successfully model their behaviour during magmatic ascent, their diffusivities in silicate melts have to be well constrained.</p><p>Diffusion data in hydrous settings are missing or underrepresented: very little studies have been conducted on boron diffusivity, the literature gives contradictory diffusion coefficients for lithium. In this study, we focus on elemental diffusion and isotopic fractionation of lithium and boron in hydrated silica-rich melts, in order to better understand B diffusivity and solve the discrepancies about Li data.</p><p>Sets of diffusion-couple experiments on synthetic water-bearing rhyolitic glasses have been performed, using an internally heated pressure vessel, at a constant pressure of 300 MPa and temperatures of 700°, 800° and 1000° C, with durations of 0 seconds, 30 minutes, 2 hours and 4 hours. Lithium and boron elemental concentrations have been measured by LA-ICP-MS, resulting in 600 μm long profiles, while isotopic ratios are being evaluated by SIMS analysis.</p><p>The zero-hour experiment indicates that lithium diffuses very rapidly, potentially already at temperatures below 700° C (during the heating process), while boron diffusion is generally slower, hence the necessity of higher temperatures and longer experimental run durations. Overall, our experimental results confirm previous literatue findings that Li diffuses faster in water-bearing melts, and give first constraints on boron diffusivity in hydrated silicate melts, whereas previous studies only considered anhydrous samples. The determination of diffusion coefficients of the two elements gives us a better understanding of the diffusion timescales. This information allows us to interpret additional decompression experiments, simulating a wide range of magma ascent rates, and to correlate the elemental and isotopic behaviour of lithium and boron with decompression-induced bubble formation processes.</p>

2015 ◽  
Vol 100 (5-6) ◽  
pp. 1182-1189 ◽  
Author(s):  
Ying Wang ◽  
Samantha X. Cody ◽  
Dionysis Foustoukos ◽  
Bjorn O. Mysen ◽  
George D. Cody

1994 ◽  
Vol 49 (3-4) ◽  
pp. 258-264 ◽  
Author(s):  
D. Girlich ◽  
H.-D. Lüdemann ◽  
C. Buttersack ◽  
K. Buchholz

The self diffusion coefficients D of the water molecules and of sucrose have been determined by the pulsed field gradient NMR technique over a wide range of temperatures and concentrations (cmax: 70% w/w suc.). All temperature dependencies can be fitted to a Vogel- Tammann-Fulcher equation. The isothermic concentration dependence of D for the sucrose is given by a simple exponential concentration dependence


A general computational strategy is presented for the calculation of the chronoamperometric responses arising from potential-step experiments at rotating disc electrodes. The method is applicable to a wide range of electrode reaction mechanisms and theoretical results are given for single- and double-potential-step experiments for ECE, DISP1, DISP2, EC' and CE reactions. For the last, the treatment is extended to cover the case where reactants have grossly unequal diffusion coefficients. Steadystate behaviour is also deduced. The extent to which the various mechanistic pathways can be distinguished is identified and the necessary experiments defined.


1997 ◽  
Vol 334 ◽  
pp. 157-188 ◽  
Author(s):  
B. J. GLASSER ◽  
I. G. KEVREKIDIS ◽  
S. SUNDARESAN

It is well known that most gas fluidized beds of particles bubble, while most liquid fluidized beds do not. It was shown by Anderson, Sundaresan & Jackson (1995), through direct numerical integration of the volume-averaged equations of motion for the fluid and particles, that this distinction is indeed accounted for by these equations, coupled with simple, physically credible closure relations for the stresses and interphase drag. The aim of the present study is to investigate how the model equations afford this distinction and deduce an approximate criterion for separating bubbling and non-bubbling systems. To this end, we have computed, making use of numerical continuation techniques as well as bifurcation theory, the one- and two-dimensional travelling wave solutions of the volume-averaged equations for a wide range of parameter values, and examined the evolution of these travelling wave solutions through direct numerical integration. It is demonstrated that whether bubbles form or not is dictated by the value of Ω = (ρsv3t/Ag) 1/2, where ρs is the density of particles, vt is the terminal settling velocity of an isolated particle, g is acceleration due to gravity and A is a measure of the particle phase viscosity. When Ω is large (> ∼ 30), bubbles develop easily. It is then suggested that a natural scale for A is ρsvtdp so that Ω2 is simply a Froude number.


2019 ◽  
Author(s):  
Mijung Song ◽  
Adrian M. Maclean ◽  
Yuanzhou Huang ◽  
Natalie R. Smith ◽  
Sandra L. Blair ◽  
...  

Abstract. Information on liquid-liquid phase separation (LLPS) and viscosity (or diffusion) within secondary organic aerosol (SOA) is needed to improve predictions of particle size, mass, reactivity, and cloud nucleating properties in the atmosphere. Here we report on LLPS and viscosities within SOA generated by the photooxidation of diesel fuel vapors. Diesel fuel contains a wide range of volatile organic compounds, and SOA generated by the photooxidation of diesel fuel vapors may be a good proxy for SOA from anthropogenic emissions. In our experiments, LLPS occurred over the relative humidity (RH) range of ~ 70 % to ~ 100 %, resulting in an organic-rich outer phase and a water-rich inner phase. These results may have implications for predicting the cloud nucleating properties of anthropogenic SOA since the organic-rich outer phase can lower the kinetic barrier for activation to a cloud droplet. At ≤ 10 % RH, the viscosity was in the range of ≥ 1 × 108 Pa s, which corresponds to roughly the viscosity of tar pitch. At 38–50 % RH the viscosity was in the range of 1 × 108–3 × 105 Pa s. These measured viscosities are consistent with predictions based on oxygen to carbon elemental ratio (O : C) and molar mass as well as predictions based on the number of carbon, hydrogen, and oxygen atoms. Based on the measured viscosities and the Stokes–Einstein relation, at ≤ 10 % RH diffusion coefficients of organics within diesel fuel SOA is ≤ 5.4 × 10−17cm2 s−1 and the mixing time of organics within 200 nm diesel fuel SOA particles (τmixing) is ≳ 50 h. These small diffusion coefficients and large mixing times may be important in laboratory experiments, where SOA is often generated and studied using low RH conditions and on time scales of minutes to hours. At 38–50 % RH, the calculated organic diffusion coefficients are in the range of 5.4 × 10−17 to 1.8 × 10−13 cm2 s−1 and calculated τmixing values are in the range of ~ 0.01 h to ~ 50 h. These values provide important constraints for the physicochemical properties of anthropogenic SOA.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Sara Di Salvo ◽  
Eleonora Braschi ◽  
Martina Casalini ◽  
Sara Marchionni ◽  
Teresa Adani ◽  
...  

An analytical protocol for high-precision, in situ microscale isotopic investigations is presented here, which combines the use of a high-performing mechanical microsampling device and high-precision TIMS measurements on micro-Sr samples, allowing for excellent results both in accuracy and precision. The present paper is a detailed methodological description of the whole analytical procedure from sampling to elemental purification and Sr-isotope measurements. The method offers the potential to attain isotope data at the microscale on a wide range of solid materials with the use of minimally invasive sampling. In addition, we present three significant case studies for geological and life sciences, as examples of the various applications of microscale 87Sr/86Sr isotope ratios, concerning (i) the pre-eruptive mechanisms triggering recent eruptions at Nisyros volcano (Greece), (ii) the dynamics involved with the initial magma ascent during Eyjafjallajökull volcano’s (Iceland) 2010 eruption, which are usually related to the precursory signals of the eruption, and (iii) the environmental context of a MIS 3 cave bear, Ursus spelaeus. The studied cases show the robustness of the methods, which can be also be applied in other areas, such as cultural heritage, archaeology, petrology, and forensic sciences.


2019 ◽  
Vol 19 (19) ◽  
pp. 12515-12529 ◽  
Author(s):  
Mijung Song ◽  
Adrian M. Maclean ◽  
Yuanzhou Huang ◽  
Natalie R. Smith ◽  
Sandra L. Blair ◽  
...  

Abstract. Information on liquid–liquid phase separation (LLPS) and viscosity (or diffusion) within secondary organic aerosol (SOA) is needed to improve predictions of particle size, mass, reactivity, and cloud nucleating properties in the atmosphere. Here we report on LLPS and viscosities within SOA generated by the photooxidation of diesel fuel vapors. Diesel fuel contains a wide range of volatile organic compounds, and SOA generated by the photooxidation of diesel fuel vapors may be a good proxy for SOA from anthropogenic emissions. In our experiments, LLPS occurred over the relative humidity (RH) range of ∼70 % to ∼100 %, resulting in an organic-rich outer phase and a water-rich inner phase. These results may have implications for predicting the cloud nucleating properties of anthropogenic SOA since the presence of an organic-rich outer phase at high-RH values can lower the supersaturation with respect to water required for cloud droplet formation. At ≤10 % RH, the viscosity was ≥1×108 Pa s, which corresponds to roughly the viscosity of tar pitch. At 38 %–50 % RH, the viscosity was in the range of 1×108 to 3×105 Pa s. These measured viscosities are consistent with predictions based on oxygen to carbon elemental ratio (O:C) and molar mass as well as predictions based on the number of carbon, hydrogen, and oxygen atoms. Based on the measured viscosities and the Stokes–Einstein relation, at ≤10 % RH diffusion coefficients of organics within diesel fuel SOA is ≤5.4×10-17 cm2 s−1 and the mixing time of organics within 200 nm diesel fuel SOA particles (τmixing) is 50 h. These small diffusion coefficients and large mixing times may be important in laboratory experiments, where SOA is often generated and studied using low-RH conditions and on timescales of minutes to hours. At 38 %–50 % RH, the calculated organic diffusion coefficients are in the range of 5.4×10-17 to 1.8×10-13 cm2 s−1 and calculated τmixing values are in the range of ∼0.01 h to ∼50 h. These values provide important constraints for the physicochemical properties of anthropogenic SOA.


Solid Earth ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1549-1561
Author(s):  
Janik Dohmen ◽  
Harro Schmeling

Abstract. In partially molten regions inside the Earth, melt buoyancy may trigger upwelling of both solid and fluid phases, i.e., diapirism. If the melt is allowed to move separately with respect to the matrix, melt perturbations may evolve into solitary porosity waves. While diapirs may form on a wide range of scales, porosity waves are restricted to sizes of a few times the compaction length. Thus, the size of a partially molten perturbation in terms of compaction length controls whether material is dominantly transported by porosity waves or by diapirism. We study the transition from diapiric rise to solitary porosity waves by solving the two-phase flow equations of conservation of mass and momentum in 2D with porosity-dependent matrix viscosity. We systematically vary the initial size of a porosity perturbation from 1.8 to 120 times the compaction length. If the perturbation is of the order of a few compaction lengths, a single solitary wave will emerge, either with a positive or negative vertical matrix flux. If melt is not allowed to move separately to the matrix a diapir will emerge. In between these end members we observe a regime where the partially molten perturbation will split up into numerous solitary waves, whose phase velocity is so low compared to the Stokes velocity that the whole swarm of waves will ascend jointly as a diapir, just slowly elongating due to a higher amplitude main solitary wave. Only if the melt is not allowed to move separately to the matrix will no solitary waves build up, but as soon as two-phase flow is enabled solitary waves will eventually emerge. The required time to build them up increases nonlinearly with the perturbation radius in terms of compaction length and might be too long to allow for them in nature in many cases.


2021 ◽  
Vol 97 (1) ◽  
pp. 28-37
Author(s):  
D.S. Gertsriken ◽  
◽  
A.M. Husak ◽  
V.F. Mazanko ◽  
S. Ye. Bogdanov ◽  
...  

The dependences of diffusion coefficients in metals with different crystal lattice (b.c.c., f.c.c., h.c.p., b.c.t.), subjected to pulse effects by different types of processing in a wide range of strain rates (10-2 - 106 s-1) without heating and at T < 0,5 Tpl. studied by m ethods based on the use of radioactive indicators 55Fe, 95Nb, 60Co, 65Zn, 63Ni, 26Al, 44Ti (layer-by-layer radiometric analysis of residual integral activity, macro- and microautoradiography). Used such types of processing as ultrasonic shock treatment, diffusion welding, shock load, magnetic pulse processing, etc. On the same materials subjected to the same types of processing, mechanical characteristics (impact strength, microhardness, tensile strength, etc.) were determined. In addition, literature data related to the determination of some mechanical characteristics in the deformation of metals at different speeds were used. It turned out that with increasing the rate of plastic deformation there is not only an increase in the mobility of atoms, but also a decrease in differences in the values of the diffusion coefficients of intrinsic atoms and other diffusers in different metals. Despite the large difference in melting temperatures, in particular zinc and niobium, their self-diffusion coefficients in the migration of atoms without heating at a rate of 106 s-1 differ only 1.5 times, while at 1 s-1 the difference in the mobility of atoms is 4 orders of magnitude. It is shown that the velocity dependences of diffusion and mechanical characteristics can be rectilinear, have extremum or inflection, but they will be approximately the same for diffusion coefficients and parameters that characterize the mechanical properties of metals under impulse loads. Establishing the type of velocity dependences for diffusion and mechanical characteristics makes it possible to determine intermediate and extrapolated values for both characteristics, as well as on the schedule of one dependence to predict the shape of the other with a certain accuracy. Keywords: radioactive isotopes, self- and heterodiffusion, pulse loads, strain rate, mechanical characteristic.


Sign in / Sign up

Export Citation Format

Share Document