Did tropical precipitation improve in CMIP6 simulations?

Author(s):  
Stephanie Fiedler ◽  
Traute Crueger ◽  
Roberta D’Agostino ◽  
Karsten Peters ◽  
Tobias Becker ◽  
...  

<p>Climate models are known to have biases in tropical precipitation. We assessed to what extent simulations of tropical precipitation have improved in the new Coupled Model Intercomparison Project (CMIP) phase six, using state-of-the-art observational products and model results from the earlier CMIP phases three and five. We characterize tropical precipitation with different well-established metrics. Our assessment includes (1) general aspects of the mean climatology like precipitation associated with the Intertropical Convergence Zone and shallow cloud regimes in the tropics, (2) solar radiative effects including the summer monsoons and the time of occurrence of tropical precipitation in the course of the day, (3) modes of internal variability such as the Madden-Julian Oscillation and the El Niño Southern Oscillation, and (4) changes in the course of the 20th century. The results point to improvements of CMIP6 models for some metrics, e.g., the occurrence of drizzle events and consecutive dry days. However, no improvements of CMIP6 models are identified for other aspects of tropical precipitation. These include the area and intensity of the global summer monsoon as well as the diurnal cycle of the tropical precipitation amount, frequency and intensity.</p><p>All our metrics taken together, CMIP6 models show no systematic improvement of tropical precipitation across different temporal and spatial scales. The model biases in the spatial distribution of tropical precipitation are typically larger than the changes associated with anthropogenic warming. Given the pace of climate change as compared to the pace of climate model improvements, we suggest to use novel modeling approaches to understand the responseof tropical precipitation to changes in atmospheric composition.</p>

2020 ◽  
Vol 148 (9) ◽  
pp. 3653-3680 ◽  
Author(s):  
Stephanie Fiedler ◽  
Traute Crueger ◽  
Roberta D’Agostino ◽  
Karsten Peters ◽  
Tobias Becker ◽  
...  

Abstract The representation of tropical precipitation is evaluated across three generations of models participating in phases 3, 5, and 6 of the Coupled Model Intercomparison Project (CMIP). Compared to state-of-the-art observations, improvements in tropical precipitation in the CMIP6 models are identified for some metrics, but we find no general improvement in tropical precipitation on different temporal and spatial scales. Our results indicate overall little changes across the CMIP phases for the summer monsoons, the double-ITCZ bias, and the diurnal cycle of tropical precipitation. We find a reduced amount of drizzle events in CMIP6, but tropical precipitation occurs still too frequently. Continuous improvements across the CMIP phases are identified for the number of consecutive dry days, for the representation of modes of variability, namely, the Madden–Julian oscillation and El Niño–Southern Oscillation, and for the trends in dry months in the twentieth century. The observed positive trend in extreme wet months is, however, not captured by any of the CMIP phases, which simulate negative trends for extremely wet months in the twentieth century. The regional biases are larger than a climate change signal one hopes to use the models to identify. Given the pace of climate change as compared to the pace of model improvements to simulate tropical precipitation, we question the past strategy of the development of the present class of global climate models as the mainstay of the scientific response to climate change. We suggest the exploration of alternative approaches such as high-resolution storm-resolving models that can offer better prospects to inform us about how tropical precipitation might change with anthropogenic warming.


2013 ◽  
Vol 26 (22) ◽  
pp. 8827-8849 ◽  
Author(s):  
Ailie J. E. Gallant ◽  
Steven J. Phipps ◽  
David J. Karoly ◽  
A. Brett Mullan ◽  
Andrew M. Lorrey

Abstract The stationarity of relationships between local and remote climates is a necessary, yet implicit, assumption underlying many paleoclimate reconstructions. However, the assumption is tenuous for many seasonal relationships between interannual variations in the El Niño–Southern Oscillation (ENSO) and the southern annular mode (SAM) and Australasian precipitation and mean temperatures. Nonstationary statistical relationships between local and remote climates on the 31–71-yr time scale, defined as a change in their strength and/or phase outside that expected from local climate noise, are detected on near-centennial time scales from instrumental data, climate model simulations, and paleoclimate proxies. The relationships between ENSO and SAM and Australasian precipitation were nonstationary at 21%–37% of Australasian stations from 1900 to 2009 and strongly covaried, suggesting common modulation. Control simulations from three coupled climate models produce ENSO-like and SAM-like patterns of variability, but differ in detail to the observed patterns in Australasia. However, the model teleconnections also display nonstationarity, in some cases for over 50% of the domain. Therefore, nonstationary local–remote climatic relationships are inherent in environments regulated by internal variability. The assessments using paleoclimate reconstructions are not robust because of extraneous noise associated with the paleoclimate proxies. Instrumental records provide the only means of calibrating and evaluating regional paleoclimate reconstructions. However, the length of Australasian instrumental observations may be too short to capture the near-centennial-scale variations in local–remote climatic relationships, potentially compromising these reconstructions. The uncertainty surrounding nonstationary teleconnections must be acknowledged and quantified. This should include interpreting nonstationarities in paleoclimate reconstructions using physically based frameworks.


2020 ◽  
Vol 33 (17) ◽  
pp. 7591-7617 ◽  
Author(s):  
Clara Orbe ◽  
Luke Van Roekel ◽  
Ángel F. Adames ◽  
Amin Dezfuli ◽  
John Fasullo ◽  
...  

AbstractWe compare the performance of several modes of variability across six U.S. climate modeling groups, with a focus on identifying robust improvements in recent models [including those participating in phase 6 of the Coupled Model Intercomparison Project (CMIP)] compared to previous versions. In particular, we examine the representation of the Madden–Julian oscillation (MJO), El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), the quasi-biennial oscillation (QBO) in the tropical stratosphere, and the dominant modes of extratropical variability, including the southern annular mode (SAM), the northern annular mode (NAM) [and the closely related North Atlantic Oscillation (NAO)], and the Pacific–North American pattern (PNA). Where feasible, we explore the processes driving these improvements through the use of “intermediary” experiments that utilize model versions between CMIP3/5 and CMIP6 as well as targeted sensitivity experiments in which individual modeling parameters are altered. We find clear and systematic improvements in the MJO and QBO and in the teleconnection patterns associated with the PDO and ENSO. Some gains arise from better process representation, while others (e.g., the QBO) from higher resolution that allows for a greater range of interactions. Our results demonstrate that the incremental development processes in multiple climate model groups lead to more realistic simulations over time.


2013 ◽  
Vol 26 (21) ◽  
pp. 8597-8615 ◽  
Author(s):  
Alexander Sen Gupta ◽  
Nicolas C. Jourdain ◽  
Jaclyn N. Brown ◽  
Didier Monselesan

Abstract Climate models often exhibit spurious long-term changes independent of either internal variability or changes to external forcing. Such changes, referred to as model “drift,” may distort the estimate of forced change in transient climate simulations. The importance of drift is examined in comparison to historical trends over recent decades in the Coupled Model Intercomparison Project (CMIP). Comparison based on a selection of metrics suggests a significant overall reduction in the magnitude of drift from phase 3 of CMIP (CMIP3) to phase 5 of CMIP (CMIP5). The direction of both ocean and atmospheric drift is systematically biased in some models introducing statistically significant drift in globally averaged metrics. Nevertheless, for most models globally averaged drift remains weak compared to the associated forced trends and is often smaller than the difference between trends derived from different ensemble members or the error introduced by the aliasing of natural variability. An exception to this is metrics that include the deep ocean (e.g., steric sea level) where drift can dominate in forced simulations. In such circumstances drift must be corrected for using information from concurrent control experiments. Many CMIP5 models now include ocean biogeochemistry. Like physical models, biogeochemical models generally undergo long spinup integrations to minimize drift. Nevertheless, based on a limited subset of models, it is found that drift is an important consideration and must be accounted for. For properties or regions where drift is important, the drift correction method must be carefully considered. The use of a drift estimate based on the full control time series is recommended to minimize the contamination of the drift estimate by internal variability.


2014 ◽  
Vol 27 (8) ◽  
pp. 2931-2947 ◽  
Author(s):  
Ed Hawkins ◽  
Buwen Dong ◽  
Jon Robson ◽  
Rowan Sutton ◽  
Doug Smith

Abstract Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, understanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer additional benefits. Here the origins of biases in decadal predictions are investigated, including whether analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent bias tendency. A “toy” model of a prediction system is initially developed and used to show that there are several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true bias tendency, which can provide information about errors in the underlying model and/or errors in the specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to adjust decadal forecasts. The methods developed are applied to decadal hindcasts of global mean temperature made using the Hadley Centre Coupled Model, version 3 (HadCM3), climate model, and it is found that this model exhibits a small positive bias tendency in the ensemble mean. When considering different model versions, it is shown that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of these relevant physical quantities.


2018 ◽  
Author(s):  
Ohad Harari ◽  
Chaim I. Garfinkel ◽  
Olaf Morgenstern ◽  
Guang Zeng ◽  
Simone Tilmes ◽  
...  

Abstract. The Northern Hemisphere and tropical circulation response to interannual variability in Arctic stratospheric ozone is analyzed in a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models simulate a connection between ozone variability and temperature/geopotential height in the lower stratosphere similar to that observed. A connection between Arctic ozone variability and polar cap sea-level pressure is also found, but additional analysis suggests that it is mediated by the dynamical variability that typically drives the anomalous ozone concentrations. The CCMI models also show a connection between Arctic stratospheric ozone and the El Nino Southern Oscillation (ENSO): the CCMI models show a tendency of Arctic stratospheric ozone variability to lead ENSO variability one to two years later. While this effect is much weaker than that observed, it is still statistically significant. Overall, Arctic stratospheric ozone is related to lower stratospheric variability and may also influence the surface in both polar and tropical latitudes, though these impacts can be masked by internal variability if data is only available for ~ 40 years.


2013 ◽  
Vol 52 (10) ◽  
pp. 2296-2311 ◽  
Author(s):  
Kristina Trusilova ◽  
Barbara Früh ◽  
Susanne Brienen ◽  
Andreas Walter ◽  
Valéry Masson ◽  
...  

AbstractAs the nonhydrostatic regional model of the Consortium for Small-Scale Modelling in Climate Mode (COSMO-CLM) is increasingly employed for studying the effects of urbanization on the environment, the authors extend its surface-layer parameterization by the Town Energy Budget (TEB) parameterization using the “tile approach” for a single urban class. The new implementation COSMO-CLM+TEB is used for a 1-yr reanalysis-driven simulation over Europe at a spatial resolution of 0.11° (~12 km) and over the area of Berlin at a spatial resolution of 0.025° (~2.8 km) for evaluating the new coupled model. The results on the coarse spatial resolution of 0.11° show that the standard and the new models provide 2-m temperature and daily precipitation fields that differ only slightly by from −0.1 to +0.2 K per season and ±0.1 mm day−1, respectively, with very similar statistical distributions. This indicates only a negligibly small effect of the urban parameterization on the model's climatology. Therefore, it is suggested that an urban parameterization may be omitted in model simulations on this scale. On the spatial resolution of 0.025° the model COSMO-CLM+TEB is able to better represent the magnitude of the urban heat island in Berlin than the standard model COSMO-CLM. This finding shows the importance of using the parameterization for urban land in the model simulations on fine spatial scales. It is also suggested that models could benefit from resolving multiple urban land use classes to better simulate the spatial variability of urban temperatures for large metropolitan areas on spatial scales below ~3 km.


2021 ◽  
Vol 14 (8) ◽  
pp. 4865-4890
Author(s):  
Peter Uhe ◽  
Daniel Mitchell ◽  
Paul D. Bates ◽  
Nans Addor ◽  
Jeff Neal ◽  
...  

Abstract. Riverine flood hazard is the consequence of meteorological drivers, primarily precipitation, hydrological processes and the interaction of floodwaters with the floodplain landscape. Modeling this can be particularly challenging because of the multiple steps and differing spatial scales involved in the varying processes. As the climate modeling community increases their focus on the risks associated with climate change, it is important to translate the meteorological drivers into relevant hazard estimates. This is especially important for the climate attribution and climate projection communities. Current climate change assessments of flood risk typically neglect key processes, and instead of explicitly modeling flood inundation, they commonly use precipitation or river flow as proxies for flood hazard. This is due to the complexity and uncertainties of model cascades and the computational cost of flood inundation modeling. Here, we lay out a clear methodology for taking meteorological drivers, e.g., from observations or climate models, through to high-resolution (∼90 m) river flooding (fluvial) hazards. Thus, this framework is designed to be an accessible, computationally efficient tool using freely available data to enable greater uptake of this type of modeling. The meteorological inputs (precipitation and air temperature) are transformed through a series of modeling steps to yield, in turn, surface runoff, river flow, and flood inundation. We explore uncertainties at different modeling steps. The flood inundation estimates can then be related to impacts felt at community and household levels to determine exposure and risks from flood events. The approach uses global data sets and thus can be applied anywhere in the world, but we use the Brahmaputra River in Bangladesh as a case study in order to demonstrate the necessary steps in our hazard framework. This framework is designed to be driven by meteorology from observational data sets or climate model output. In this study, only observations are used to drive the models, so climate changes are not assessed. However, by comparing current and future simulated climates, this framework can also be used to assess impacts of climate change.


2013 ◽  
Vol 26 (13) ◽  
pp. 4398-4413 ◽  
Author(s):  
Chris Jones ◽  
Eddy Robertson ◽  
Vivek Arora ◽  
Pierre Friedlingstein ◽  
Elena Shevliakova ◽  
...  

Abstract The carbon cycle is a crucial Earth system component affecting climate and atmospheric composition. The response of natural carbon uptake to CO2 and climate change will determine anthropogenic emissions compatible with a target CO2 pathway. For phase 5 of the Coupled Model Intercomparison Project (CMIP5), four future representative concentration pathways (RCPs) have been generated by integrated assessment models (IAMs) and used as scenarios by state-of-the-art climate models, enabling quantification of compatible carbon emissions for the four scenarios by complex, process-based models. Here, the authors present results from 15 such Earth system GCMs for future changes in land and ocean carbon storage and the implications for anthropogenic emissions. The results are consistent with the underlying scenarios but show substantial model spread. Uncertainty in land carbon uptake due to differences among models is comparable with the spread across scenarios. Model estimates of historical fossil-fuel emissions agree well with reconstructions, and future projections for representative concentration pathway 2.6 (RCP2.6) and RCP4.5 are consistent with the IAMs. For high-end scenarios (RCP6.0 and RCP8.5), GCMs simulate smaller compatible emissions than the IAMs, indicating a larger climate–carbon cycle feedback in the GCMs in these scenarios. For the RCP2.6 mitigation scenario, an average reduction of 50% in emissions by 2050 from 1990 levels is required but with very large model spread (14%–96%). The models also disagree on both the requirement for sustained negative emissions to achieve the RCP2.6 CO2 concentration and the success of this scenario to restrict global warming below 2°C. All models agree that the future airborne fraction depends strongly on the emissions profile with higher airborne fraction for higher emissions scenarios.


2013 ◽  
Vol 26 (1) ◽  
pp. 231-245 ◽  
Author(s):  
Michael Winton ◽  
Alistair Adcroft ◽  
Stephen M. Griffies ◽  
Robert W. Hallberg ◽  
Larry W. Horowitz ◽  
...  

Abstract The influence of alternative ocean and atmosphere subcomponents on climate model simulation of transient sensitivities is examined by comparing three GFDL climate models used for phase 5 of the Coupled Model Intercomparison Project (CMIP5). The base model ESM2M is closely related to GFDL’s CMIP3 climate model version 2.1 (CM2.1), and makes use of a depth coordinate ocean component. The second model, ESM2G, is identical to ESM2M but makes use of an isopycnal coordinate ocean model. The authors compare the impact of this “ocean swap” with an “atmosphere swap” that produces the GFDL Climate Model version 3 (CM3) by replacing the AM2 atmospheric component with AM3 while retaining a depth coordinate ocean model. The atmosphere swap is found to have much larger influence on sensitivities of global surface temperature and Northern Hemisphere sea ice cover. The atmosphere swap also introduces a multidecadal response time scale through its indirect influence on heat uptake. Despite significant differences in their interior ocean mean states, the ESM2M and ESM2G simulations of these metrics of climate change are very similar, except for an enhanced high-latitude salinity response accompanied by temporarily advancing sea ice in ESM2G. In the ESM2G historical simulation this behavior results in the establishment of a strong halocline in the subpolar North Atlantic during the early twentieth century and an associated cooling, which are counter to observations in that region. The Atlantic meridional overturning declines comparably in all three models.


Sign in / Sign up

Export Citation Format

Share Document