The Effects of Hyperbolic Meteoroids from Parker Solar Probe to the Moon

Author(s):  
Jamey Szalay ◽  
Petr Pokorny ◽  
Mihaly Horanyi ◽  
Stuart Bale ◽  
Eric Christian ◽  
...  

<p>The zodiacal cloud in the inner solar system undergoes continual evolution, as its dust grains are collisionally ground and sublimated into smaller and smaller sizes. Sufficiently small (~<500 nm) grains known as beta-meteoroids are ejected from the inner solar system on hyperbolic orbits under the influence of solar radiation pressure. These small grains can reach significantly larger speeds than those in the nominal zodiacal cloud and impact the surfaces of airless bodies. Since the discovery of the Moon's asymmetric ejecta cloud, the origin of its sunward-canted density enhancement has not been well understood. We propose impact ejecta from beta-meteoroids that hit the Moon's sunward side could explain this unresolved asymmetry. The proposed hypothesis rests on the fact that beta-meteoroids are one of the few truly asymmetric meteoroid sources in the solar system, as unbound grains always travel away from the Sun and lack a symmetric inbound counterpart. This finding suggests beta-meteoroids may also contribute to the evolution of other airless surfaces in the inner solar system as well as within other exo-zodiacal disks. We will also highlight recent observations from the Parker Solar Probe (PSP) spacecraft, which suggest it is being bombarded by the very same beta-meteoroids. We discuss how observations by PSP, which lacks a dedicated dust detector, can be used to inform the structure and variability of beta-meteoroids in the inner solar system closer to the Sun than ever before.</p>

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Diogo Merguizo Sanchez ◽  
Tadashi Yokoyama ◽  
Antonio Fernando Bertachini de Almeida Prado

The complexity of the GNSS and the several types of satellites in the MEO region turns the creation of a definitive strategy to dispose the satellites of this system into a hard task. Each constellation of the system adopts its own disposal strategy; for example, in the American GPS, the disposal strategy consists in changing the altitude of the nonoperational satellites to 500 km above or below their nominal orbits. In this work, we propose simple but efficient techniques to discard satellites of the GNSS by exploiting Hohmann type maneuvers combined with the use of the2ω˙+Ω˙≈0resonance to increase its orbital eccentricity, thus promoting atmospheric reentry. The results are shown in terms of the increment of velocity required to transfer the satellites to the new orbits. Some comparisons with direct disposal maneuvers (Hohmann type) are also presented. We use the exact equations of motion, considering the perturbations of the Sun, the Moon, and the solar radiation pressure. The geopotential model was considered up to order and degree eight. We showed the quantitative influence of the sun and the moon on the orbit of these satellites by using the method of the integral of the forces over the time.


2021 ◽  
Vol 57 (2) ◽  
pp. 279-295
Author(s):  
L. O. Marchi ◽  
D. M. Sanchez ◽  
F. C. F. Venditti ◽  
A. F. B. A. Prado ◽  
A. K. Misra

In this work, we study the effects of solar radiation pressure (SRP) on the problem of changing the orbit of an asteroid to support planetary defense, scientific research, or exploitation of materials. This alternative considers a tethered reflective balloon (or a set of reflective balloons) attached to the asteroid, with a high area-to-mass ratio, to use the SRP to deflect a potentially hazardous asteroid (PHA) or to approximate the target asteroid to Earth. The tether is assumed to be inextensible and massless, and the motion is described only in the orbital plane of the asteroid around the Sun. The model is then used to study the effects that the tether length, the reflectivity coefficient, and the area-to-mass ratio have on the deviation of the trajectory of the asteroid.


Aerospace ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 366
Author(s):  
Alicia Herrero ◽  
Santiago Moll ◽  
José-A. Moraño ◽  
David Vázquez ◽  
Erika Vega

Interception of extrasolar objects is one of the major current astrophysical objectives since it allows gathering information on the formation and composition of other planetary systems. This paper develops a tool to design optimal orbits for the interception of these bodies considering the effects of different perturbation sources. The optimal trajectory is obtained by solving a Lambert’s problem that gives the required initial impulse. A numerical integration of a perturbed orbital model is calculated. This model considers the perturbations of the joint action of the gravitational potentials of the Solar System planets and the solar radiation pressure. These effects cause a deviation in the orbit that prevents the interception from taking place, so an iterative correction scheme of the initial estimated impulse is presented, capable of modifying the orbit and achieving a successful interception in a more realistic environment.


1976 ◽  
Vol 31 ◽  
pp. 459-463
Author(s):  
G. Schwehm

The force acting on an interplanetary dust particle due to solar radiation pressure at a distance R from the sun is given by


2021 ◽  
Author(s):  
Harald Krüger ◽  
Peter Strub ◽  
Eberhard Grün

<p>Cometary meteoroid streams (also referred to as trails) exist along the orbits of comets, forming fine structures of the interplanetary dust cloud. The streams consist predominantly of the largest cometary particles (with sizes of approximately (100 micrometer to 1 cm) which are ejected at low speeds and remain very close to the comet orbit for several revolutions around the Sun. </p> <p>The Interplanetary Meteoroid Environment for eXploration (IMEX) dust streams in space model (Soja et al., Astronomy & Astrophysics, 2015) is a universal model that simulates recently created cometary dust streams in the inner solar system, developed under ESA contract. IMEX is a physical model for dust dynamics and follows the orbital evolution of the streams of 420 comets. Particles are emitted when the comet is in the inner solar system, taking into account comet apparitions between the years 1700 and 2080. The dust ejection is described by an emission model, dust production rate and mass distribution covering the mass range from 10^-8 kg to 10^-2 kg (approximately corresponding to 100 micrometer to 1 cm particles). The dust production is calculated from the comet's absolute magnitude, the observed water production rate and dust-to-gas ratio. For each emitted particle, the trajectory is integrated individually including solar gravity, planetary perturbations as well as solar radiation pressure and <br />Poynting-Robertson drag. The model calculates dust number density, flux and  velocity.</p> <p>We apply the IMEX model to study comet stream traverses by the Ulysses spacecraft. Ulysses was launched in 1990 and, after a Jupiter swing-by in 1992, became the first interplanetary spacecraft orbiting the Sun on a highly inclined  trajectory with an inclination of 80 degrees. The spacecraft was equipped with an impact ionization dust detector which provided the longest  data set of continuous in situ dust measurements in interplanetary space existing to date, covering 17 years  from 1990 to 2007. In addition to the interplanetary dust complex, several dust populations were investigated with the Ulysses dust instrument in the past: interstellar dust sweeping through our solar system, streams of approximately 10 nanometer-sized dust particles emanating from Jupiter's volcanically active moon Io, as well as sub-micrometer-sized particles driven away from the Sun by solar radiation pressure (so-called beta particles). Here we study the detection conditions for cometary meteoroid streams with the dust detector on board the Ulysses spacecraft and present first results from our attempt to identify cometary stream particles in the measured dust data set. </p> <p>Acknowledgements: The IMEX Dust Streams in Space model was developed under ESA funding (contract 4000106316/12/NL/AF - IMEX).</p>


Sign in / Sign up

Export Citation Format

Share Document