Influence of ULS data acquisition characteristics on the achievable stem reconstruction accuracies

Author(s):  
Moritz Bruggisser ◽  
Johannes Otepka ◽  
Norbert Pfeifer ◽  
Markus Hollaus

<p>Unmanned aerial vehicles-borne laser scanning (ULS) allows time-efficient acquisition of high-resolution point clouds on regional extents at moderate costs. The quality of ULS-point clouds facilitates the 3D modelling of individual tree stems, what opens new possibilities in the context of forest monitoring and management. In our study, we developed and tested an algorithm which allows for i) the autonomous detection of potential stem locations within the point clouds, ii) the estimation of the diameter at breast height (DBH) and iii) the reconstruction of the tree stem. In our experiments on point clouds from both, a RIEGL miniVUX-1DL and a VUX-1UAV, respectively, we could detect 91.0 % and 77.6 % of the stems within our study area automatically. The DBH could be modelled with biases of 3.1 cm and 1.1 cm, respectively, from the two point cloud sets with respective detection rates of 80.6 % and 61.2 % of the trees present in the field inventory. The lowest 12 m of the tree stem could be reconstructed with absolute stem diameter differences below 5 cm and 2 cm, respectively, compared to stem diameters from a point cloud from terrestrial laser scanning. The accuracy of larger tree stems thereby was higher in general than the accuracy for smaller trees. Furthermore, we recognized a small influence only of the completeness with which a stem is covered with points, as long as half of the stem circumference was captured. Likewise, the absolute point count did not impact the accuracy, but, in contrast, was critical to the completeness with which a scene could be reconstructed. The precision of the laser scanner, on the other hand, was a key factor for the accuracy of the stem diameter estimation. <br>The findings of this study are highly relevant for the flight planning and the sensor selection of future ULS acquisition missions in the context of forest inventories.</p>

Author(s):  
Matthew B. Creasy ◽  
Wade Travis Tinkham ◽  
Chad M. Hoffman ◽  
Jody C. Vogeler

Characterization of forest structure is important for management-related decision making, monitoring, and adaptive management. Increasingly, observations of forest structure are needed at both finer resolutions and across greater extents to support spatially explicit management planning. Unmanned aerial system (UAS)-based photogrammetry provides an airborne method of forest structure data acquisition at a significantly lower cost and time commitment than existing methods such as airborne laser scanning (LiDAR). This study utilizes nearly 5,000 stem-mapped trees in ponderosa pine-dominated forests to evaluate several algorithms for detecting individual tree locations and characterizing crown area across tree sizes. Our results indicate that adaptive variable-window detection methods with UAS-based canopy height models have greater tree detection rates compared to fixed window analysis across a range of tree sizes. Using the UAS approach, probability of detecting individual trees decreases from 97% for dominant overstory to 67% for suppressed understory trees. Additionally, crown radii were correctly determined within 0.5 m for approximately two-thirds of sampled trees. These findings highlight the potential for UAS photogrammetry to characterize forest structure through the detection of trees and tree groups in open-canopy ponderosa pine forests. Further work should investigate how these methods transfer to more diverse species compositions and forest structures.


2020 ◽  
Vol 12 (8) ◽  
pp. 1236 ◽  
Author(s):  
Karel Kuželka ◽  
Martin Slavík ◽  
Peter Surový

Three-dimensional light detection and ranging (LiDAR) point clouds acquired from unmanned aerial vehicles (UAVs) represent a relatively new type of remotely sensed data. Point cloud density of thousands of points per square meter with survey-grade accuracy makes the UAV laser scanning (ULS) a very suitable tool for detailed mapping of forest environment. We used RIEGL VUX-SYS to scan forest stands of Norway spruce and Scots pine, the two most important economic species of central European forests, and evaluated the suitability of point clouds for individual tree stem detection and stem diameter estimation in a fully automated workflow. We segmented tree stems based on point densities in voxels in subcanopy space and applied three methods of robust circle fitting to fit cross-sections along the stems: (1) Hough transform; (2) random sample consensus (RANSAC); and (3) robust least trimmed squares (RLTS). We detected correctly 99% and 100% of all trees in research plots for spruce and pine, respectively, and were able to estimate diameters for 99% of spruces and 98% of pines with mean bias error of −0.1 cm (−1%) and RMSE of 6.0 cm (19%), using the best performing method, RTLS. Hough transform was not able to fit perimeters in unfiltered and often incomplete point representations of cross-sections. In general, RLTS performed slightly better than RANSAC, having both higher stem detection success rate and lower error in diameter estimation. Better performance of RLTS was more pronounced in complicated situations, such as incomplete and noisy point structures, while for high-quality point representations, RANSAC provided slightly better results.


Author(s):  
G. Tran ◽  
D. Nguyen ◽  
M. Milenkovic ◽  
N. Pfeifer

Full-waveform (FWF) LiDAR (Light Detection and Ranging) systems have their advantage in recording the entire backscattered signal of each emitted laser pulse compared to conventional airborne discrete-return laser scanner systems. The FWF systems can provide point clouds which contain extra attributes like amplitude and echo width, etc. In this study, a FWF data collected in 2010 for Eisenstadt, a city in the eastern part of Austria was used to classify four main classes: buildings, trees, waterbody and ground by employing a decision tree. Point density, echo ratio, echo width, normalised digital surface model and point cloud roughness are the main inputs for classification. The accuracy of the final results, correctness and completeness measures, were assessed by comparison of the classified output to a knowledge-based labelling of the points. Completeness and correctness between 90% and 97% was reached, depending on the class. While such results and methods were presented before, we are investigating additionally the transferability of the classification method (features, thresholds …) to another urban FWF lidar point cloud. Our conclusions are that from the features used, only echo width requires new thresholds. A data-driven adaptation of thresholds is suggested.


Author(s):  
V. E. Oniga ◽  
A. I. Breaban ◽  
E. I. Alexe ◽  
C. Văsii

Abstract. Indoor mapping and modelling is an important research subject with application in a wide range of domains including interior design, real estate, cultural heritage conservation and restoration. There are multiple sensors applicable for 3D indoor modelling, but the laser scanning technique is frequently used because of the acquisition time, detailed information and accuracy. In this paper, the efficiency of the Maptek I-Site 8820 terrestrial scanner, which is a long-range laser scanner and the accuracy of a HMLS point cloud acquired with a mobile scanner, namely GeoSlam Zeb Horizon were tested for indoor mapping. Aula Magna “Carmen Silva” of the “Gheorghe Asachi” Technical University of Iasi is studied in the current paper since the auditorium interior creates a distinct environment that combines complex geometric structures with architectural lighting and for preserving its great cultural value, the monument has a national historical significance. The registration process of the TLS point clouds was done using two methods: a semi-automatic one with artificial targets and a completely automatic one, based on Iterative Closest Point (ICP) algorithm. The resulted TLS point cloud was analysed in relation to the HMLS point cloud by computing the M3C2 (Multiscale Model to Model Cloud Comparison), obtaining a standard deviation of 2.1 cm and by investigating the Hausdorff distances from which resulted a standard deviation (σ) of 1.6 cm. Cross-sections have been extracted from the HMLS and TLS point clouds and after comparing the sections, 80% of the sigma values are less or equal to 1 cm. The results show high potential of using HMLS and also a long-range laser scanner for 3D modelling of complex scenes, the occlusion effect in the case of TLS being only 5% of the scanned area.


2021 ◽  
Author(s):  
Eetu Puttonen ◽  
Juha Hyyppä ◽  
Paula Litkey ◽  
Mariana Batista Campos ◽  
Heikki Hyyti ◽  
...  

<p>Light detection and ranging (lidar) has become an essential tool in mapping and change detection in different environments over the last 20 years. Laser scanners capture point clouds to create accurate digital snapshots of their surroundings. These snapshots tell about the structural information in the scene and can be readily returned to again and again to detect and measure any changes with multi-temporal measurements. However, multitemporal measurements cannot typically resolve the change events nor can they resolve more high frequency dynamics that happen on daily or weekly basis in the scene. Also, lidar systems operate still mainly with single wavelength limiting their usability in classification tasks. First multi- and hyperspectral systems have been already demonstrated, but have yet to break through in wider usage. Finnish Geospatial Research Institute (FGI) has been prototyping with different 3D measurement systems for the last 10 years to improve multitemporal mapping (4D) solutions. The prototypes include both hyperspectral and long-term multi- and hypertemporal lidar systems, and their combinations in static and mobile configurations. FGI started early on to experiment with hyperspectral laser sources (2007) and successfully demonstrated the first hyperspectral laser scanner prototype in 2012. The system was later used in detecting intraday vegetation dynamics in 2015. Multitemporal multispectral ALS measurements have been conducted since 2015 in Evo and in Espoolahti. The first long-term multitemporal studies with FGI mapping platforms were started with ALS to monitor changes in forests (1998) and built environment (2001) and with mobile laser scanning in studying the erosion of an arctic river basin (2008) annually.  Multitemporal ALS studies with vegetation started in 1998 in Kalkkinen and in 2007 in Evo followed with bi-temporal studies with TLS. Test Site Evo has been acquired with ALS. In 2020, Evo test site was granted Academy of Finland Research Infrastructure (RI) status. The RI will collect a 30-year-long time series with annual measurements using various laser scanning sensors for investigating single tree growth processes, forest dynamics, understanding cyclic forest while having variation at diurnal and annual scales and forest monitoring technologies. Vegetation dynamics monitoring was extended in 2020, when FGI started set up a permanent TLS measurement station in a boreal forest. The TLS station accurately detects structural changes of hundreds of tree crowns around it. The experiment aims to detect the changes of phenological state the trees and further link them with the environmental parameter variation. 4D measurements have successfully demonstrated their potential in extending the information available from laser scanning systems. To improve the usage of these novel information, automated pre-filtering of the vast data amounts already at sensor level will be imperative. Different lidar platforms can operate throughout the spatial scale from millimeter precision all way to national coverage. Thus, development of new scalable lidar RIs open new possibilities to complement already existing infrastructures.</p>


2019 ◽  
Vol 11 (23) ◽  
pp. 2781 ◽  
Author(s):  
Johan Holmgren ◽  
Michael Tulldahl ◽  
Jonas Nordlöf ◽  
Erik Willén ◽  
Håkan Olsson

Mobile laser scanning (MLS) could make forest inventories more efficient, by using algorithms that automatically derive tree stem center positions and stem diameters. In this work we present a novel method for calibration of the position for laser returns based on tree spines derived from laser data. A first calibration of positions was made for sequential laser scans and further calibrations of laser returns were possible after segmentation, in which laser returns were associated to individual tree stems. The segmentation made it possible to model tree stem spines (i.e., center line of tree stems). Assumptions of coherent tree spine positions were used for correcting laser return positions on the tree stems, thereby improving estimation of stem profiles (i.e., stem diameters at different heights from the ground level). The method was validated on six 20-m radius field plots. Stem diameters were estimated with a Root-Mean-Square-Error (RMSE) of 1 cm for safely linked trees (maximum link distance of 0.5 m) and with a restriction of a minimum amount of data from height intervals for supporting circle estimates. The accuracy was high for plot level estimates of basal area-weighted mean stem diameter (relative RMSE 3.4%) and basal area (relative RMSE 8.5%) because of little influence of small trees (i.e., aggregation of individual trees). The spine calibration made it possible to derive 3D stem profiles also from 3D laser data calculated from sensor positions with large errors because of disturbed below canopy signals from global navigation satellite systems.


Author(s):  
Yubin Liang ◽  
Yan Qiu ◽  
Tiejun Cui

Co-registration of terrestrial laser scanner and digital camera has been an important topic of research, since reconstruction of visually appealing and measurable models of the scanned objects can be achieved by using both point clouds and digital images. This paper presents an approach for co-registration of terrestrial laser scanner and digital camera. A perspective intensity image of the point cloud is firstly generated by using the collinearity equation. Then corner points are extracted from the generated perspective intensity image and the camera image. The fundamental matrix F is then estimated using several interactively selected tie points and used to obtain more matches with RANSAC. The 3D coordinates of all the matched tie points are directly obtained or estimated using the least squares method. The robustness and effectiveness of the presented methodology is demonstrated by the experimental results. Methods presented in this work may also be used for automatic registration of terrestrial laser scanning point clouds.


Author(s):  
Beril Sirmacek ◽  
Yueqian Shen ◽  
Roderik Lindenbergh ◽  
Sisi Zlatanova ◽  
Abdoulaye Diakite

We present a comparison of point cloud generation and quality of data acquired by Zebedee (Zeb1) and Leica C10 devices which are used in the same building interior. Both sensor devices come with different practical and technical advantages. As it could be expected, these advantages come with some drawbacks. Therefore, depending on the requirements of the project, it is important to have a vision about what to expect from different sensors. In this paper, we provide a detailed analysis of the point clouds of the same room interior acquired from Zeb1 and Leica C10 sensors. First, it is visually assessed how different features appear in both the Zeb1 and Leica C10 point clouds. Next, a quantitative analysis is given by comparing local point density, local noise level and stability of local normals. Finally, a simple 3D room plan is extracted from both the Zeb1 and the Leica C10 point clouds and the lengths of constructed line segments connecting corners of the room are compared. The results show that Zeb1 is far superior in ease of data acquisition. No heavy handling, hardly no measurement planning and no point cloud registration is required from the operator. The resulting point cloud has a quality in the order of centimeters, which is fine for generating a 3D interior model of a building. Our results also clearly show that fine details of for example ornaments are invisible in the Zeb1 data. If point clouds with a quality in the order of millimeters are required, still a high-end laser scanner like the Leica C10 is required, in combination with a more sophisticated, time-consuming and elaborative data acquisition and processing approach.


Author(s):  
M. Kedzierski ◽  
D. Wierzbickia ◽  
A. Fryskowska ◽  
B. Chlebowska

The laser scanning technique is still a very popular and fast growing method of obtaining information on modeling 3D objects. The use of low-cost miniature scanners creates new opportunities for small objects of 3D modeling based on point clouds acquired from the scan. The same, the development of accuracy and methods of automatic processing of this data type is noticeable. The article presents methods of collecting raw datasets in the form of a point-cloud using a low-cost ground-based laser scanner FabScan. As part of the research work 3D scanner from an open source FabLab project was constructed. In addition, the results for the analysis of the geometry of the point clouds obtained by using a low-cost laser scanner were presented. Also, some analysis of collecting data of different structures (made of various materials such as: glass, wood, paper, gum, plastic, plaster, ceramics, stoneware clay etc. and of different shapes: oval and similar to oval and prism shaped) have been done. The article presents two methods used for analysis: the first one - visual (general comparison between the 3D model and the real object) and the second one - comparative method (comparison between measurements on models and scanned objects using the mean error of a single sample of observations). The analysis showed, that the low-budget ground-based laser scanner FabScan has difficulties with collecting data of non-oval objects. Items built of glass painted black also caused problems for the scanner. In addition, the more details scanned object contains, the lower the accuracy of the collected point-cloud is. Nevertheless, the accuracy of collected data (using oval-straight shaped objects) is satisfactory. The accuracy, in this case, fluctuates between ± 0,4 mm and ± 1,0 mm whereas when using more detailed objects or a rectangular shaped prism the accuracy is much more lower, between 2,9 mm and ± 9,0 mm. Finally, the publication presents the possibility (for the future expansion of research) of modernization FabScan by the implementation of a larger amount of camera-laser units. This will enable spots the registration , that are less visible.


Author(s):  
Hoang Long Nguyen ◽  
David Belton ◽  
Petra Helmholz

The demand for accurate spatial data has been increasing rapidly in recent years. Mobile laser scanning (MLS) systems have become a mainstream technology for measuring 3D spatial data. In a MLS point cloud, the point clouds densities of captured point clouds of interest features can vary: they can be sparse and heterogeneous or they can be dense. This is caused by several factors such as the speed of the carrier vehicle and the specifications of the laser scanner(s). The MLS point cloud data needs to be processed to get meaningful information e.g. segmentation can be used to find meaningful features (planes, corners etc.) that can be used as the inputs for many processing steps (e.g. registration, modelling) that are more difficult when just using the point cloud. Planar features are dominating in manmade environments and they are widely used in point clouds registration and calibration processes. There are several approaches for segmentation and extraction of planar objects available, however the proposed methods do not focus on properly segment MLS point clouds automatically considering the different point densities. This research presents the extension of the segmentation method based on planarity of the features. This proposed method was verified using both simulated and real MLS point cloud datasets. The results show that planar objects in MLS point clouds can be properly segmented and extracted by the proposed segmentation method.


Sign in / Sign up

Export Citation Format

Share Document