Extrinsic anisotropy of two-phase Newtonian aggregates: fabric characterisation and parametrisation, and application to global mantle convection.

Author(s):  
Albert de Montserrat Navarro ◽  
Manuele Faccenda ◽  
Giorgio Pennacchioni

<p><span>Rocks of the Earth's crust and mantle commonly consist of aggregates of different minerals with contrasting mechanical properties. During progressive, high temperature (ductile) deformation, these rocks tend to develop an extrinsic mechanical anisotropy related to the strain competition of the different minerals, the amount of accumulated bulk strain and the bulk strain geometry. Extrinsic anisotropy is thought to play an important role in a wide range of geodynamic processes up to the scale of mantle convection. However, the evolution of grain-scale and rock-scale associated with this anisotropy cannot be directly implemented in large-scale numerical simulations. For two-phase aggregates -a good rheological approximation of most Earth's rocks- we propose a methodology to indirectly approximate the extrinsic viscous anisotropy by a combination of (i) 3-D mechanical models of rock fabrics, and (ii) analytical effective medium theories. The resulting 3-D mechanical models, confirm that the weak least abundant phase induces substantial rock weakening by forming an inter-connected network of thin layers in the flow direction. 3-D models further suggest, however, that the lateral inter-connection of these weak layers is quite limited, and the maximum structural weakening is considerably less than previously estimated. </span><span>Ont the other hand,</span><span> presence of hard inclusions does not have a profound impact in the effective strength of the aggregate, </span><span>with</span><span> lineations develop</span><span>ing only</span><span> at relatively low compositional strength contrast. When rigid inclusions become clogged, however, the aggregate viscous resistance can increase over the theoretical upper bound. We show that the modelled grain-scale fabrics can be parameterised as a function of the bulk deformation and material phase properties and can be combined with analytical solutions to approximate the anisotropic viscous tensor. </span><span>At last, the resulting parameterisation </span><span>of the extrinsic viscous tensor </span><span>is implemented in a bi-dimensional global mantle convection code</span><span>. </span><span>Preliminary results show that extrinsic is responsible for an increase of the upwelling speed of hot material from the lowermost mantle, </span><span>different convective cell shapes</span><span>, and deflection of mantle plumes at the uppermost mantle.</span></p>

Author(s):  
S. Busam ◽  
J. Ebner ◽  
S. Wittig

The development of modern aero-engines is leading to increased pressure and temperature levels which makes increasing demands on the engines’ safety and reliability. In particular the vent-system of the bearing chambers located in the hot section of the engine represents a critical component in the design process due to the complex two-phase flow phenomena. The air/oil mixture that is discharged out of the bearing chambers has a strong influence on the overall pressure losses and it shows locally enhanced heat transfer where oil coking or oil fires with the risk of flashback into the bearing chamber can occur. In order to gain a deeper insight into the interacting flow of air and oil, a glass pipe test section with a inner tube diameter of 10 mm was integrated into the vent-line of the high speed bearing chamber test rig operated at the Institut für Thermische Strömungsmaschinen, University of Karlsruhe, Germany. Therewith, an experimental study of the oil film along the wall in vertical annular upflow was performed by use of a laser focus displacement meter. This instrument which was introduced by Takamasa et al. [1] allows accurate measurements of film thickness to be made in real time with a sensitivity of 2 microns and a datarate of 1.5 kilohertz. Comprehensive measurements were conducted at two locations of the pipe 320 mm apart in flow direction. A wide range of oil and air flow rates was examined to study their impact on the local film thickness. Both fluids were heated up to the same temperature of 70°C and 100 °C, respectively, to vary the oil viscosity by a factor of 2.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1566
Author(s):  
Oliver J. Pemble ◽  
Maria Bardosova ◽  
Ian M. Povey ◽  
Martyn E. Pemble

Chitosan-based films have a diverse range of potential applications but are currently limited in terms of commercial use due to a lack of methods specifically designed to produce thin films in high volumes. To address this limitation directly, hydrogels prepared from chitosan, chitosan-tetraethoxy silane, also known as tetraethyl orthosilicate (TEOS) and chitosan-glutaraldehyde have been used to prepare continuous thin films using a slot-die technique which is described in detail. By way of preliminary analysis of the resulting films for comparison purposes with films made by other methods, the mechanical strength of the films produced was assessed. It was found that as expected, the hybrid films made with TEOS and glutaraldehyde both show a higher yield strength than the films made with chitosan alone. In all cases, the mechanical properties of the films were found to compare very favorably with similar measurements reported in the literature. In order to assess the possible influence of the direction in which the hydrogel passes through the slot-die on the mechanical properties of the films, testing was performed on plain chitosan samples cut in a direction parallel to the direction of travel and perpendicular to this direction. It was found that there was no evidence of any mechanical anisotropy induced by the slot die process. The examples presented here serve to illustrate how the slot-die approach may be used to create high-volume, high-area chitosan-based films cheaply and rapidly. It is suggested that an approach of the type described here may facilitate the use of chitosan-based films for a wide range of important applications.


Geology ◽  
2019 ◽  
Vol 47 (12) ◽  
pp. 1127-1130 ◽  
Author(s):  
Gabriel G. Meyer ◽  
Nicolas Brantut ◽  
Thomas M. Mitchell ◽  
Philip G. Meredith

Abstract The so-called “brittle-ductile transition” is thought to be the strongest part of the lithosphere, and defines the lower limit of the seismogenic zone. It is characterized not only by a transition from localized to distributed (ductile) deformation, but also by a gradual change in microscale deformation mechanism, from microcracking to crystal plasticity. These two transitions can occur separately under different conditions. The threshold conditions bounding the transitions are expected to control how deformation is partitioned between localized fault slip and bulk ductile deformation. Here, we report results from triaxial deformation experiments on pre-faulted cores of Carrara marble over a range of confining pressures, and determine the relative partitioning of the total deformation between bulk strain and on-fault slip. We find that the transition initiates when fault strength (σf) exceeds the yield stress (σy) of the bulk rock, and terminates when it exceeds its ductile flow stress (σflow). In this domain, yield in the bulk rock occurs first, and fault slip is reactivated as a result of bulk strain hardening. The contribution of fault slip to the total deformation is proportional to the ratio (σf − σy)/(σflow − σy). We propose an updated crustal strength profile extending the localized-ductile transition toward shallower regions where the strength of the crust would be limited by fault friction, but significant proportions of tectonic deformation could be accommodated simultaneously by distributed ductile flow.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Téguewindé Sawadogo ◽  
Njuki Mureithi

Having previously verified the quasi-steady model under two-phase flow laboratory conditions, the present work investigates the feasibility of practical application of the model to a prototypical steam generator (SG) tube subjected to a nonuniform two-phase flow. The SG tube vibration response and normal work-rate induced by tube-support interaction are computed for a range of flow conditions. Similar computations are performed using the Connors model as a reference case. In the quasi-steady model, the fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives. These forces have been measured in two-phase flow over a wide range of void fractions making it possible to model the effect of void fraction variation along the tube span. A full steam generator tube subjected to a nonuniform two-phase flow was considered in the simulations. The nonuniform flow distribution corresponds to that along a prototypical steam-generator tube based on thermal-hydraulic computations. Computation results show significant and important differences between the Connors model and the two-phase flow based quasi-steady model. While both models predict the occurrence of fluidelastic instability, the predicted pre-instability and post instability behavior is very different in the two models. The Connors model underestimates the flow-induced negative damping in the pre-instability regime and vastly overestimates it in the post instability velocity range. As a result the Connors model is found to underestimate the work-rate used in the fretting wear assessment at normal operating velocities, rendering the model potentially nonconservative under these practically important conditions. Above the critical velocity, this model largely overestimates the work-rate. The quasi-steady model on the other hand predicts a more moderately increasing work-rate with the flow velocity. The work-rates predicted by the model are found to be within the range of experimental results, giving further confidence to the predictive ability of the model. Finally, the two-phase flow based quasi-steady model shows that fluidelastic forces may reduce the effective tube damping in the pre-instability regime, leading to higher than expected work-rates at prototypical operating velocities.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhengzhi Wang ◽  
Chunling Zhu

In view of the rotor icing problems, the influence of centrifugal force on rotor blade icing is investigated. A numerical simulation method of three-dimensional rotor blade icing is presented. Body-fitted grids around the rotor blade are generated using overlapping grid technology and rotor flow field characteristics are obtained by solving N-S equations. According to Eulerian two-phase flow, the droplet trajectories are calculated and droplet impingement characteristics are obtained. The mass and energy conservation equations of ice accretion model are established and a new calculation method of runback water mass based on shear stress and centrifugal force is proposed to simulate water flow and ice shape. The calculation results are compared with available experimental results in order to verify the correctness of the numerical simulation method. The influence of centrifugal force on rotor icing is calculated. The results show that the flow direction and distribution of liquid water on rotor surfaces change under the action of centrifugal force, which lead to the increasing of icing at the stagnation point and the decreasing of icing on both frozen limitations.


1978 ◽  
Vol 100 (4) ◽  
pp. 395-409 ◽  
Author(s):  
Jaroslaw Mikielewicz ◽  
David Gordon Wilson ◽  
Tak-Chee Chan ◽  
Albert L. Goldfinch

The semiempirical method described combines the ideal performance of a centrifugal pump with experimental data for single and two-phase flow to produce a so-called “head-loss ratio,” which is the apparent loss of head in two-phase flow divided by the loss of head in single-phase flow. This head-loss ratio is shown to be primarily a function of void fraction. It is demonstrated that the measured characteristics of a centrifugal pump operating in two-phase flow in normal rotation and normal and reversed flow directions (first and second -quadrant operation) and in reversed rotation and reversed flow direction (third-quadrant operation) can be reproduced with acceptable accuracy.


2021 ◽  
Author(s):  
Omar Shaaban ◽  
Eissa Al-Safran

Abstract The production and transportation of high viscosity liquid/gas two-phase along petroleum production system is a challenging operation due to the lack of understanding the flow behavior and characteristics. In particular, accurate prediction of two-phase slug length in pipes is crucial to efficiently operate and safely design oil well and separation facilities. The objective of this study is to develop a mechanistic model to predict high viscosity liquid slug length in pipelines and to optimize the proper set of closure relationships required to ensure high accuracy prediction. A large high viscosity liquid slug length database is collected and presented in this study, against which the proposed model is validated and compared with other models. A mechanistic slug length model is derived based on the first principles of mass and momentum balances over a two-phase slug unit, which requires a set of closure relationships of other slug characteristics. To select the proper set of closure relationships, a numerical optimization is carried out using a large slug length dataset to minimize the prediction error. Thousands of combinations of various slug flow closure relationships were evaluated to identify the most appropriate relationships for the proposed slug length model under high viscosity slug length condition. Results show that the proposed slug length mechanistic model is applicable for a wide range of liquid viscosities and is sensitive to the selected closure relationships. Results revealed that the optimum closure relationships combination is Archibong-Eso et al. (2018) for slug frequency, Malnes (1983) for slug liquid holdup, Jeyachandra et al. (2012) for drift velocity, and Nicklin et al. (1962) for the distribution coefficient. Using the above set of closure relationships, model validation yields 37.8% absolute average percent error, outperforming all existing slug length models.


Sign in / Sign up

Export Citation Format

Share Document