What dataset should I choose? The influence of data choices on flood exposure estimations at national scales

Author(s):  
Sara Lindersson ◽  
Johanna Mård ◽  
Luigia Brandimarte ◽  
Giuliano Di Baldassarre

<p>There are currently several large-scale gridded archives available for the study of flood exposure, and the results will inevitably depend on the datasets included in the analysis. The purpose of this work is to demonstrate how country flood exposure, here represented as the presence of population within floodplains, is influenced by dataset choices.</p><p>We conduct this geographical analysis in two parts. First, we conduct a global analysis showing how different flood exposure metrics influence comparisons between countries. Second, we overlay five commonly used gridded archives (three population archives and two floodplain archives) for 32 countries. The purpose is to quantify the influence of data choices, while also giving an overview of the various dataset methodologies. We finally zoom in on areas where the five datasets yield very dissimilar results, to exemplify typical differences among the datasets.</p>

2021 ◽  
Author(s):  
Jasper Verschuur ◽  
Elco Koks ◽  
Jim Hall

<p>Reliable port infrastructure is essential for the facilitation of international trade flows. Disruptions to port infrastructure can result in trade bottlenecks, in particular if multiple key ports are affected simultaneously due to natural disasters with large spatial footprints such as earthquakes and tropical cyclones (Verschuur et al. 2019). For instance, Hurricane Katrina (2005) disrupted port operations in multiple ports in New Orleans, which transport around 45% of the country’s food and farm products, resulting in more than USD800 million export losses and price spikes of food products (Trepte and Rice, 2014). In order to improve the resilience of the transport and supply-chain network, the risk of large-scale trade bottlenecks need to be quantified on global scale. However, to date, the risk of single and multiple port failures due to large-scale natural disasters, and the resulting consequences, has not yet been explored.</p><p> </p><p>Here, we present a global analysis of the risk of simultaneous port disruptions due to tropical cyclones and the associated risk of bottlenecks in the national and global maritime trade network. To do this, we have combined a new global dataset on the port-to-port trade network with 10,000 years of synthetic tropical cyclone tracks (Bloemendaal et al., 2020) and an impact-module that estimates the duration of the port disruption as a function of cyclone wind speed. We show how certain countries and specific economic sectors within countries are at risk of large-scale trade bottlenecks, mainly due to the concentration of trade in a few key ports that are geographically clustered.</p><p> </p><p>These results can be used to stress test the global maritime transport network and inform strategies to improve supply-chain resilience (e.g. diversification of transport and import). Moreover, it can support port planning on a national level to make strategic investments to reduce the risk of trade bottlenecks or to design post-disaster emergency response strategies (e.g. rerouting strategies to alternative ports).</p>


2007 ◽  
Vol 20 (22) ◽  
pp. 5553-5571 ◽  
Author(s):  
Masao Kanamitsu ◽  
Hideki Kanamaru

Abstract For the purpose of producing datasets for regional-scale climate change research and application, the NCEP–NCAR reanalysis for the period 1948–2005 was dynamically downscaled to hourly, 10-km resolution over California using the Regional Spectral Model. This is Part I of a two-part paper, describing the details of the downscaling system and comparing the downscaled analysis [California Reanalysis Downscaling at 10 km (CaRD10)] against observation and global analysis. An extensive validation of the downscaled analysis was performed using station observations, Higgins gridded precipitation analysis, and Precipitation-Elevation Regression on Independent Slopes Model (PRISM) precipitation analysis. In general, the CaRD10 near-surface wind and temperature fit better to regional-scale station observations than the NCEP–NCAR reanalysis used to force the regional model, supporting the premise that the regional downscaling is a viable method to attain regional detail from large-scale analysis. This advantage of CaRD10 was found on all time scales, ranging from hourly to decadal scales (i.e., from diurnal variation to multidecadal trend). Dynamically downscaled analysis provides ways to study various regional climate phenomena of different time scales because all produced variables are dynamically, physically, and hydrologically consistent. However, the CaRD10 is not free from problems. It suffers from positive bias in precipitation for heavy precipitation events. The CaRD10 is inaccurate near the lateral boundary where regional detail is damped by the lateral boundary relaxation. It is important to understand these limitations before the downscaled analysis is used for research.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Gaston K. Mazandu ◽  
Nicola J. Mulder

Technological developments in large-scale biological experiments, coupled with bioinformatics tools, have opened the doors to computational approaches for the global analysis of whole genomes. This has provided the opportunity to look at genes within their context in the cell. The integration of vast amounts of data generated by these technologies provides a strategy for identifying potential drug targets within microbial pathogens, the causative agents of infectious diseases. As proteins are druggable targets, functional interaction networks between proteins are used to identify proteins essential to the survival, growth, and virulence of these microbial pathogens. Here we have integrated functional genomics data to generate functional interaction networks between Mycobacterium tuberculosis proteins and carried out computational analyses to dissect the functional interaction network produced for identifying drug targets using network topological properties. This study has provided the opportunity to expand the range of potential drug targets and to move towards optimal target-based strategies.


PROTEOMICS ◽  
2003 ◽  
Vol 4 (1) ◽  
pp. 151-179 ◽  
Author(s):  
Isabelle Noël-Georis ◽  
Tatiana Vallaeys ◽  
Renaud Chauvaux ◽  
Sébastien Monchy ◽  
Paul Falmagne ◽  
...  

2013 ◽  
Vol 141 (6) ◽  
pp. 1866-1883 ◽  
Author(s):  
Christina R. Holt ◽  
Istvan Szunyogh ◽  
Gyorgyi Gyarmati

Abstract This study investigates the benefits of employing a limited-area data assimilation (DA) system to enhance lower-resolution global analyses in the northwest Pacific tropical cyclone (TC) basin. Numerical experiments are carried out with a global analysis system at horizontal resolution T62 and a limited-area analysis system at resolutions from 200 to 36 km. The global and limited-area DA systems, which are both based on the local ensemble transform Kalman filter algorithm, are implemented using a unique configuration, in which the global DA system provides information about the large-scale analysis and background uncertainty to the limited-area DA system. The limited-area analyses of the storm locations are, on average, more accurate than those from the global analyses, but increasing the resolution of the limited-area system beyond 100 km has little benefit. Two factors contribute to the higher accuracy of the limited-area analyses. First, the limited-area system improves the accuracy of the location estimates for strong storms, which is introduced when the background is updated by the global assimilation. Second, it improves the accuracy of the background estimate of the storm locations for moderate and weak storms. Improvements in the steering flow analysis as a result of increased resolution are modest and short lived in the forecasts. Limited-area track forecasts are more accurate, on average, than global forecasts, independently of the strength of the storms up to five days. This forecast improvement is due to the more accurate analysis of the initial position of storms and the better representation of the interactions between the storms and their immediate environment.


2010 ◽  
Vol 278 (1713) ◽  
pp. 1823-1830 ◽  
Author(s):  
Jennifer M. Sunday ◽  
Amanda E. Bates ◽  
Nicholas K. Dulvy

A tenet of macroecology is that physiological processes of organisms are linked to large-scale geographical patterns in environmental conditions. Species at higher latitudes experience greater seasonal temperature variation and are consequently predicted to withstand greater temperature extremes. We tested for relationships between breadths of thermal tolerance in ectothermic animals and the latitude of specimen location using all available data, while accounting for habitat, hemisphere, methodological differences and taxonomic affinity. We found that thermal tolerance breadths generally increase with latitude, and do so at a greater rate in the Northern Hemisphere. In terrestrial ectotherms, upper thermal limits vary little while lower thermal limits decrease with latitude. By contrast, marine species display a coherent poleward decrease in both upper and lower thermal limits. Our findings provide comprehensive global support for hypotheses generated from studies at smaller taxonomic subsets and geographical scales. Our results further indicate differences between terrestrial and marine ectotherms in how thermal physiology varies with latitude that may relate to the degree of temperature variability experienced on land and in the ocean.


2012 ◽  
Vol 9 (2) ◽  
pp. 1123-1185 ◽  
Author(s):  
J.-M. Lellouche ◽  
O. Le Galloudec ◽  
M. Drévillon ◽  
C. Régnier ◽  
E. Greiner ◽  
...  

Abstract. Since December 2010, the global analysis and forecast of the MyOcean system consists in the Mercator Océan NEMO global 1/4° configuration with a 1/12° "zoom" over the Atlantic and Mediterranean Sea. The zoom open boundaries come from the global 1/4° at 20° S and 80° N. The data assimilation uses a reduced order Kalman filter with a 3-D multivariate modal decomposition of the forecast error. It includes an adaptative error and a localization algorithm. A 3D-Var scheme corrects for the slowly evolving large-scale biases in temperature and salinity. Altimeter data, satellite temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for the numerical ocean forecasting. This paper gives a description of the recent systems. The validation procedure is introduced and applied to the current and future systems. This paper shows how the validation impacts on the quality of the systems. It is shown how quality check (in situ, drifters) and data source (satellite temperature) impacts as much as the systems design (model physics and assimilation parameters). The validation demonstrates the accuracy of the MyOcean global products. Their quality is stable in time. The future systems under development still suffer from a drift. This could only be detected with a 5 yr hindcast of the systems. This emphasizes the need for continuous research efforts in the process of building future versions of MyOcean2 forecasting capacities.


2020 ◽  
Vol 6 (32) ◽  
pp. eaba2423
Author(s):  
Indraneel G. Kasmalkar ◽  
Katherine A. Serafin ◽  
Yufei Miao ◽  
I. Avery Bick ◽  
Leonard Ortolano ◽  
...  

As sea level rises, urban traffic networks in low-lying coastal areas face increasing risks of flood disruptions. Closure of flooded roads causes employee absences and delays, creating cascading impacts to communities. We integrate a traffic model with flood maps that represent potential combinations of storm surges, tides, seasonal cycles, interannual anomalies driven by large-scale climate variability such as the El Niño Southern Oscillation, and sea level rise. When identifying inundated roads, we propose corrections for potential biases arising from model integration. Our results for the San Francisco Bay Area show that employee absences are limited to the homes and workplaces within the areas of inundation, while delays propagate far inland. Communities with limited availability of alternate roads experience long delays irrespective of their proximity to the areas of inundation. We show that metric reach, a measure of road network density, is a better proxy for delays than flood exposure.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rajiv K. Tripathi ◽  
William Overbeek ◽  
Jaswinder Singh

Abstract SQUAMOSA-promoter binding like proteins (SBPs/SPLs) are plant specific transcription factors targeted by miR156 and involved in various biological pathways, playing multi-faceted developmental roles. This gene family is not well characterized in Brachypodium. We identified a total of 18 SBP genes in B.distachyon genome. Phylogenetic analysis revealed that SBP gene family in Brachypodium expanded through large scale duplication. A total of 10 BdSBP genes were identified as targets of miR156. Transcript cleavage analysis of selected BdSBPs by miR156 confirmed their antagonistic connection. Alternative splicing was observed playing an important role in BdSBPs and miR156 interaction. Characterization of T-DNA Bdsbp9 mutant showed reduced plant growth and spike length, reflecting its involvement in the spike development. Expression of a majority of BdSBPs elevated during spikelet initiation. Specifically, BdSBP1 and BdSBP3 differentially expressed in response to vernalization. Differential transcript abundance of BdSBP1,BdSBP3,BdSBP8,BdSBP9,BdSBP14,BdSBP18 and BdSBP23 genes was observed during the spike development under high temperature. Co-expression network, protein–protein interaction and biological pathway analysis indicate that BdSBP genes mainly regulate transcription, hormone, RNA and transport pathways. Our work reveals the multi-layered control of SBP genes and demonstrates their association with spike development and temperature sensitivity in Brachypodium.


Sign in / Sign up

Export Citation Format

Share Document