Advances in Bioinformatics
Latest Publications


TOTAL DOCUMENTS

182
(FIVE YEARS 6)

H-INDEX

19
(FIVE YEARS 3)

Published By Hindawi Limited

1687-8035, 1687-8027

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ammar I. Shihab ◽  
Faten A. Dawood ◽  
Ali H. Kashmar

Autism spectrum disorder (ASD) is an early developmental disorder characterized by mutation of enculturation associated with attention deficit disorder in the visual perception of emotional expressions. An estimated one in more than 100 people has autism. Autism affects almost four times as many boys than girls. Data analysis and classification of ASD is still challenging due to unsolved issues arising from many severity levels and range of signs and symptoms. To understanding the functions which involved in autism, neuroscience technology analyzed responses to stimuli of autistic audio and video. The study focuses on analyzing the data set of adults and children with ASD using practical component analysis method. To satisfy this aim, the proposed method consists of three main stages including: (1) data set preparation, (2) Data analysis, and (3) Unsupervised Classification. The experimental results were performed to classify adults and children with ASD. The classification results in adults give a sensitivity of 78.6% and specificity of 82.47%, while the classification results in children give a sensitivity of 87.5% and specificity of 95.7%.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Sabeena Mustafa ◽  
Hanan Balkhy ◽  
Musa Gabere

There is no effective therapeutic or vaccine for Middle East Respiratory Syndrome and this study attempts to find therapy using peptide by establishing a basis for the peptide-protein interactions through in silico docking studies for the spike protein of MERS-CoV. The antimicrobial peptides (AMPs) were retrieved from the antimicrobial peptide database (APD3) and shortlisted based on certain important physicochemical properties. The binding mode of the shortlisted peptides was measured based on the number of clusters which forms in a protein-peptide docking using Piper. As a result, we identified a list of putative AMPs which binds to the spike protein of MERS-CoV, which may be crucial in providing the inhibitory action. It is observed that seven putative peptides have good binding score based on cluster size cutoff of 208. We conclude that seven peptides, namely, AP00225, AP00180, AP00549, AP00744, AP00729, AP00764, and AP00223, could possibly have binding with the active site of the MERS-CoV spike protein. These seven AMPs could serve as a therapeutic option for MERS and enhance its treatment outcome.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Mohamad Zulkeflee Sabri ◽  
Azzmer Azzar Abdul Hamid ◽  
Sharifah Mariam Sayed Hitam ◽  
Mohd. Zulkhairi Abdul Rahim

Aptamer has been long studied as a substitute of antibodies for many purposes. However, due to the exceeded length of the aptamers obtained in vitro, difficulties arise in its manipulation during its molecular conjugation on the matrix surfaces. Current study focuses on computational improvement for aptamers screening of hepatitis B surface antigen (HBsAg) through optimization of the length sequences obtained from SELEX. Three original aptamers with affinity against HBsAg were truncated into five short hairpin structured aptamers and their affinity against HBsAg was thoroughly studied by molecular docking, molecular dynamics (MD) simulation, and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) method. The result shows that truncated aptamers binding on HBsAg “a” determinant region are stabilized by the dynamic H-bond formation between the active binding residues and nucleotides. Amino acids residues with the highest hydrogen bonds hydrogen bond interactions with all five aptamers were determined as the active binding residues and further characterized. The computational prediction of complexes binding will include validations through experimental assays in future studies. Current study will improve the current in vitro aptamers by minimizing the aptamer length for its easy manipulation.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Mujahed I. Mustafa ◽  
Tebyan A. Abdelhameed ◽  
Fatima A. Abdelrhman ◽  
Soada A. Osman ◽  
Mohamed A. Hassan

Background. Familial Mediterranean Fever (FMF) is the most common autoinflammatory disease (AID) affecting mainly the ethnic groups originating from Mediterranean basin. We aimed to identify the pathogenic SNPs in MEFV by computational analysis software. Methods. We carried out in silico prediction of structural effect of each SNP using different bioinformatics tools to predict substitution influence on protein structure and function. Result. 23 novel mutations out of 857 nsSNPs are found to have deleterious effect on the MEFV structure and function. Conclusion. This is the first in silico analysis of MEFV gene to prioritize SNPs for further genetic mapping studies. After using multiple bioinformatics tools to compare and rely on the results predicted, we found 23 novel mutations that may cause FMF disease and it could be used as diagnostic markers for Mediterranean basin populations.


2019 ◽  
Vol 2019 ◽  
pp. 1-24 ◽  
Author(s):  
Amina Adadi ◽  
Safae Adadi ◽  
Mohammed Berrada

Machine learning has undergone a transition phase from being a pure statistical tool to being one of the main drivers of modern medicine. In gastroenterology, this technology is motivating a growing number of studies that rely on these innovative methods to deal with critical issues related to this practice. Hence, in the light of the burgeoning research on the use of machine learning in gastroenterology, a systematic review of the literature is timely. In this work, we present the results gleaned through a systematic review of prominent gastroenterology literature using machine learning techniques. Based on the analysis of 88 journal articles, we delimit the scope of application, we discuss current limitations including bias, lack of transparency, accountability, and data availability, and we put forward future avenues.


2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Sumaia A. Ali ◽  
Yassir A. Almofti ◽  
Khoubieb A. Abd-elrahman

Infectious laryngotracheitis virus (ILTV) is a gallid herpesvirus type 1, a member of the genus Iltovirus. It causes an infection in the upper respiratory tract mainly trachea which results in significant economic losses in the poultry industry worldwide. Vaccination against ILTV produced latent infected carriers’ birds, which become a source of virus transmission to nonvaccinated flocks. Thus this study aimed to design safe multiepitopes vaccine against glycoprotein B of ILT virus using immunoinformatic tools. Forty-four sequences of complete envelope glycoprotein B were retrieved from GenBank of National Center for Biotechnology Information (NCBI) and aligned for conservancy by multiple sequence alignment (MSA). Immune Epitope Database (IEDB) analysis resources were used to predict and analyze candidate epitopes that could act as a promising peptide vaccine. For B cell epitopes, thirty-one linear epitopes were predicted using Bepipred. However eight epitopes were found to be on both surface and antigenic epitopes using Emini surface accessibility and antigenicity, respectively. Three epitopes (190KKLP193, 386YSSTHVRS393, and 317KESV320) were proposed as B cell epitopes. For T cells several epitopes were interacted with MHC class I with high affinity and specificity, but the best recognized epitopes were 118YVFNVTLYY126, 335VSYKNSYHF343, and 622YLLYEDYTF630. MHC-II binding epitopes, 301FLTDEQFTI309,277FLEIANYQV285, and 743IASFLSNPF751, were proposed as promising epitopes due to their high affinity for MHC-II molecules. Moreover the docked ligand epitopes from MHC-1 molecule exhibited high binding affinity with the receptors; BF chicken alleles (BF2 2101 and 0401) expressed by the lower global energy of the molecules. In this study nine epitopes were predicted as promising vaccine candidate against ILTV. In vivo and in vitro studies are required to support the effectiveness of these predicted epitopes as a multipeptide vaccine through clinical trials.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Md. Amjad Beg ◽  
Shivangi ◽  
Sonu Chand Thakur ◽  
Laxman S. Meena

The emergence of tuberculosis is at the peak; therefore to station it at its lower level we hereby try bioinformatics approach against Mycobacterium tuberculosis [M. tuberculosis] pathogenesis. Rv3906c is a conserved hypothetical gene of M. tuberculosis and contains many GTP binding protein motif DXXG which demonstrate that this gene might be processed in a GTP binding or in GTP hydrolyzing manner. This gene shows interaction with its adjacent genes as well as pcnA which is a polymerase and localized in the extracellular region and found to be a soluble protein. Rv3906c has binding pockets for calcium atom at various positions which prove that calcium might have some role during the process of this gene. GTP binding protein motif DXXG is present in various positions and calcium binds at this site with a C-score of 0.25. Mutational analysis on this motif shows the large decrease of stability after mutation of aspartate residue with glycine. Stress conditions like pH and temperature also change stability of the protein. A decrease in stability at this position might play a role in inhibition of survival of the pathogen. These computational studies of this gene might be a successful step towards drug development against tuberculosis.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Maria Susan Anggreainy ◽  
M. Rahmat Widyanto ◽  
Belawati H. Widjaja ◽  
Nurtami Soedarsono

We performed locus similarity calculation by measuring fuzzy intersection between individual locus and reference locus and then performed CODIS STR-DNA similarity calculation. The fuzzy intersection calculation enables a more robust CODIS STR-DNA similarity calculation due to imprecision caused by noise produced by PCR machine. We also proposed shifted convoluted Gaussian fuzzy number (SCGFN) and Gaussian fuzzy number (GFN) to represent each locus value as improvement of triangular fuzzy number (TFN) as used in previous research. Compared to triangular fuzzy number (TFN), GFN is more realistic to represent uncertainty of locus information because the distribution is assumed to be Gaussian. Then, the original Gaussian fuzzy number (GFN) is convoluted with distribution of certain ethnic locus information to produce the new SCGFN which more represents ethnic information compared to original GFN. Experiments were done for the following cases: people with family relationships, people of the same tribe, and certain tribal populations. The statistical test with analysis of variance (ANOVA) shows the difference in similarity between SCGFN, GFN, and TFN with a significant level of 95%. The Tukey method in ANOVA shows that SCGFN yields a higher similarity which means being better than the GFN and TFN methods. The proposed method enables CODIS STR-DNA similarity calculation which is more robust to noise and performed better CODIS similarity calculation involving familial and tribal relationships.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ekaterina Ilgisonis ◽  
Andrey Lisitsa ◽  
Valerya Kudryavtseva ◽  
Elena Ponomarenko

Concept-centered semantic maps were created based on a text-mining analysis of PubMed using the BiblioEngine_v2018 software. The objects (“concepts”) of a semantic map can be MeSH-terms or other terms (names of proteins, diseases, chemical compounds, etc.) structured in the form of controlled vocabularies. The edges between the two objects were automatically calculated based on the index of semantic similarity, which is proportional to the number of publications related to both objects simultaneously. On the one hand, an individual semantic map created based on the already published papers allows us to trace scientific inquiry. On the other hand, a prospective analysis based on the study of PubMed search history enables us to determine the possible directions for future research.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Naoual El aboudi ◽  
Laila Benhlima

The growing amount of data in healthcare industry has made inevitable the adoption of big data techniques in order to improve the quality of healthcare delivery. Despite the integration of big data processing approaches and platforms in existing data management architectures for healthcare systems, these architectures face difficulties in preventing emergency cases. The main contribution of this paper is proposing an extensible big data architecture based on both stream computing and batch computing in order to enhance further the reliability of healthcare systems by generating real-time alerts and making accurate predictions on patient health condition. Based on the proposed architecture, a prototype implementation has been built for healthcare systems in order to generate real-time alerts. The suggested prototype is based on spark and MongoDB tools.


Sign in / Sign up

Export Citation Format

Share Document