Geochemistry of minerals of  Yllymakh massif - Mesozoic alkaline ring intrusions of Central Aldan, Yakutia

Author(s):  
Elena Vasyukova ◽  
Nikolai Medvedev

<p>The Yllymakh massif is one of the Mesozoic ring intrusions of Central Aldan, Yakutia. Geological relations between rocks in this massif are enough complicated to call it multiphase. Therefore, the idea about one or different magma sources is still the topic of modern discussions. According to the previous works, there are a lot of different rocks in the Yllymakh massif. And our petrological investigation [Vasyukova et al, 2020] accepted three groups of rock that differ a lot from each other. They have not great differences in mineral composition (aegirine in all rocks, feldspars in syenites). But some critical points in their geochemical features and ages. Foid syenites containing nepheline and pseudoleucite belong to the first group. They are 140±1.9Ma old. Second group includes alkali syenites (131±2.4Ma old). And the third group of rocks are alkaline granites mostly consist of alkali pyroxene and quartz (125±1.9Ma old).</p><p>All studied rocks are divided into three groups according to the silica content and contents of the most of other elements. Points marking the composition of syenites from different groups form multidirectional trends. The alkali granite’s characteristics make an independent cluster. The REE-plots also vary. Rocks of the first group has U-shape plot and wide variations in absolute contents. Rocks of the second group have high contents of REE and gentle slope. The granites from the third group have also U-shape plot but the lowest contents.</p><p>In this work we use the LA-ICP MS to determine the contents of RE elements in minerals. There were two minerals, that have chosen – apatite and pyroxene. Usually, apatite is the main concentrator of noncoherent elements that control the form of REE-spectra and the level of REE-contents in rocks. But in the Yllymakh massif, all apatite have a similar spectra form of normalized contents. The plots of normalized REE contents have a sharp negative slope and are characterized by very insignificant Eu anomalies. Such graphs are typical for the apatite of alkaline complexes. At the same time, the REE-plots of pyroxenes are quite equal to the form of REE-plots of the corresponding rock. Pyroxenes from foid syenites and alkali granites have U-shape plot and pyroxenes from feldspar syenites have a regular negative gentle slope plot. The only difference is that the REE content in the granite pyroxenes is as high as in the syenites.</p><p>The results of the research suggest that the formation of the rock spectrum of the Yllymakh massif occurred by reactivation of geochemically similar sources in a different time in addition to others. The contents of REE in rocks were controlled by REE-contents in pyroxene and its ratio with other rock-forming minerals. Supported by RFBR grant 19-05-00788</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.a8f2a37e3c0065515141161/sdaolpUECMynit/12UGE&app=m&a=0&c=a9f448fcade7302be1a6ca5e05985168&ct=x&pn=gnp.elif&d=1" alt=""></p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.ad91c58e3c0063715141161/sdaolpUECMynit/12UGE&app=m&a=0&c=61a6b8cf3e9847d9a2091f620d19fdc7&ct=x&pn=gnp.elif&d=1" alt=""></p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.dbd2469e3c0060915141161/sdaolpUECMynit/12UGE&app=m&a=0&c=7fc98b6a3ce7560d19ce7158c38a4079&ct=x&pn=gnp.elif&d=1" alt=""></p>

2020 ◽  
Author(s):  
Svetlana Drogobuzhskaya ◽  
Tamara Bayanova ◽  
Andrey Novikov

<p>The laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) is a unique method for local analysis that allows studying mineral grains in situ. The aims of these geochemical researches are to estimate concentrations and distributions of REE, Hf, U, Th, Y, Ti, PGE and other elements in accessory and ore minerals from complex deposits in the Arctic region (Fennoscandian Shield), using the LA-ICP-MS local analysis of trace elements. Accessory minerals of zircon and baddeleyite are much valued to study distributions of rare and rare earth elements (REE). Besides, pyrite, pentlandite, pyrrhotite and other sulfides are important for determining platinum-group elements (PGE), REE, etc.</p><p>The electron (LEO-1415) and optic (LEICA OM 2500 P, camera DFC 290) spectroscopy have been applied to study the morphology of the samples. Analytical points have been selected on baddeleyite, zircon crystals and sulfide minerals based on analyses of their BSE, CL and optical images. REE, PGE and other elements have been estimated in situ by ICP-MS, using an ELAN 9000 DRC-e (Perkin Elmer) quadrupole mass spectrometer equipped with UP-266 MAСRO laser (New Wave Research).</p><p>More than 19 elements were profiled during each measurement in zircon or baddeleyite. For the first time, LA-ICP-MS techniques have been applied to estimate PGE, REE and other (S, Cr, Fe, Cu, Ni, Co, As, Se, Mo, Cd, Sn, Sb, Re, Te, Tl, Hf, W, Bi, Pb, Th, U) elements in sulfide minerals. NIST 610, NIST 612 and tandem graduation (using solutions), considering sensitivity coefficients of isotopes have been used to check the accuracy of estimations. Fe, Ni and Cu have been used as internal standards, being most evenly distributed elements in minerals, when concentrations of elements in sulphides were calculated. The estimates have been carried out, using inter-laboratory standards of chalcopyrite, pentlandite and pyrrhotite, which had been preliminarily prepared and studied using micro probe analysis (Cameca MS-46).</p><p>These techniques had been used to estimate elements in zircon extracted from basic and acidic rocks of the Lapland belt (1.9 Ga), the Keivy zone (2.7 Ga), the Kandalaksha and Kolvitsa zone (2.45 Ga) and from the Cu-Ni deposit (Terrace, Mt. Nyud, 2.5 Ga). Novel techniques have been used to analyze baddeleyite from rocks of layered PGE intrusions of the Monchegorsk ore area (2.5 Ga) and carbonatites of Kovdor and Vuoriyarvi (380 Ma). Elaborated LA-ICP-MS techniques have been applied to provide in situ measurements of PGE, Au, Ag, siderophile and chalcophile elements in sulphide minerals from the Pechenga and Allarechka Cu-Ni deposits (1.98 Ga), Fedorova Tundra and Severny Kamennik PGE deposits (2.5 Ga).</p><p>The scientific researches are supported by RFBR Grant No 18-05-70082, scientific themes 0226-2019-0032 and 0226-2019-0053.</p>


2018 ◽  
pp. 189-205
Author(s):  
Guillaume Sarah

This chapter introduces the third theme of the volume: the sources of Viking wealth. It presents a theoretical and methodological framework for ‘fingerprinting’ early medieval silver by archaeometric methods. A combined approach, integrating elemental (especially gold and bismuth) and lead isotope analysis, is advanced. The methods involved, including state-of-the-art laser ablation ICP-MS, are introduced, and the limitations of the approach clearly laid out. These methods are then used to evaluate the diffusion of silver produced at the mine of Melle (Aquitaine, France): a major source of silver coinage in the Frankish kingdoms, which the Vikings acquired through their raids in Aquitaine during the ninth century.


2020 ◽  
Author(s):  
Johannes Hammerli

<p>The long-lived radiogenic isotope systems Lu-Hf and Sm-Nd have been widely used by geochemists to study magma sources and crustal residential times of (igneous) rocks in order to understand how early crust formed and to model the production rate and volume of continental crust on global and regional-scales during the last ~4.4 Ga. However, while throughout most of Earth’s history Nd and Hf isotope signatures in terrestrial rocks are well correlated due to their very similar geochemical behavior, some of Earth’s oldest rocks show an apparent inconsistency in their Nd and Hf isotope signatures. While Hf isotopes in early Archean rocks are generally (near) chondritic, Nd isotope signatures can be distinctly super- or sub-chondritic. The super-chondritic Nd isotope values in Eoarchean samples would suggest that these rocks are derived from a mantle reservoir depleted by prior crust extraction. The chondritic Hf isotope values, on the other hand, support a mantle source from which no significant volume of crust had been extracted. While a range of different processes, some of them speculative, might explain this Hf-Nd isotope paradox, recent research [1, 2] has shown that relatively simple, post-magmatic, open-system processes can explain decoupling of the typically correlative Hf-Nd isotope signatures. This talk will focus on the importance of identifying Nd-bearing accessory minerals in (Archean) rocks to understand how the Sm-Nd isotope system is controlled and how in situ isotope and trace element analyses by LA-(MC)-ICP-MS in combination with detailed petrographic observations help to understand when and via which processes the two isotope systems become decoupled. Reconstructing the isotopic evolution of the different isotope systems since formation of the protoliths has important implications for our understanding of early crust formation and questions some of the proposed current models for early crust extraction from the mantle.</p><p> </p><p>[1] Hammerli et al. (2019) Chem. Geol 2; [2] Fisher et al. (2020) EPSL</p>


2018 ◽  
Vol 33 (2) ◽  
pp. 231-239 ◽  
Author(s):  
Yue-Heng Yang ◽  
Fu-Yuan Wu ◽  
Jin-Hui Yang ◽  
Roger H. Mitchell ◽  
Zi-Fu Zhao ◽  
...  

We report the first U–Pb geochronological investigation of schorlomite garnet from carbonatite and alkaline complexes and demonstrate its applicability for U–Pb age determination using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) due to its relatively high U and Th abundances and negligible common Pb content.


Fishes ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Junren Xue ◽  
Tao Jiang ◽  
Xiubao Chen ◽  
Hongbo Liu ◽  
Jian Yang

The authentication of high-quality fishery products originating from specific geographical regions is urgently needed worldwide. Chinese mitten crabs (Eriocheir sinensis), originating from Yangcheng Lake, are prime counterfeiting targets for the same reasons. Foreign crabs that are cultured briefly in the lake, known as “bathed” crabs, are illegally marketed as natives, negatively impacting the product quality. To establish a method for distinguishing “bathed” and genuine crabs, in this paper we conduct a comparative investigation by an Agilent 7500ce ICP-MS on multi-mineral element profiling of the third pereiopod from genuine and one month deliberately “bathing” cultured crabs. The profiles of 11 elements were significantly different between the genuine and foreign crabs before and after bathing. The discriminant analysis reached 100% accuracy to separate the genuine and “bathed” crabs into different groups. Bathing culture was unable to converge element profiles between the genuine and foreign crabs. The biogeochemical profiles can be effective for distinguishing “bathed” crabs.


2007 ◽  
Vol 49 (6) ◽  
pp. 442-466 ◽  
Author(s):  
V. I. Kovalenko ◽  
V. V. Yarmolyuk ◽  
A. M. Kozlovsky ◽  
V. P. Kovach ◽  
E. B. Sal’nikova ◽  
...  

2021 ◽  
Author(s):  
Anton Kutyrev

<p>The most famous of natural occurring iron-nickel alloys are kamacite, taenite and tetrataenite, forming iron meteorites. Normally, they have significant platinum-group elements (PGE) content being a result of high siderophile behaviour of the latter. In spite of native iron and nickel having been described in terrestrial rocks, the most abundant Fe-Ni mineral in Earth’s crust is awaruite (Ni<sub>3</sub>Fe). Current work represents the preliminary results of testing the ability of awaruite to concentrate PGE.</p><p>Awaruite is a widespread accessory mineral of ultramafic complexes. Its formation is usually assessed to the serpentinization of olivine which produces reductive fluid. The latter reacts with nickel sulfides and produces awaruite. Several reports of awaruite occurring together with platinum-group minerals (PGM) are present in the literature. In the Ural-Alaskan type complexes of Koryak Highlands (Far East Russia), such cases are abundant. Textural investigations of such complexes discovered a diverse array of serpentine–related mineralization, including isoferroplatinum in chlorite matrix, isoferroplatinum–amphibole intergrowths, and a wide range of PGE, Fe and Cu alloys formed in serpentine veinlets together with awaruite and base metal sulfides. This provides evidence of the relation between awaruite and platinum mineralization.</p><p>LA-ICP-MS has been used to reveal the PGE content in awaruite and coexisting sulfides. Grains from the placers related to the Galmoenan complex of Ural-Alaskan type were used for this study. The analysis revealed that sulfides may bear significant PGE admixture. Unexpectedly, the most abundant impurity is Os. Its content varies from 0.7 to 538 ppm. The shape of the time-resolved spectra of some samples indicates the possible presence of solid inclusions which concentrate Os. However, most of them, including those with 538 ppm Os, exhibit plain time-resolved spectra suggesting homogeneous Os distribution. Contents of other PGE are moderate: up to 8.3 ppm Pt, 1.4 ppm Pd, 4.3 ppm Ru, 0.25 ppm Rh and 2.6 ppm Ir.</p><p>Some awaruite grains also show relatively high Os content (up to 89 ppm), but time-resolved spectra of them exhibit clear evidence of mineral inclusions presence. In one case, Os spike coincides with the S spike, suggesting that Os is incorporated into the sulfide phase. In the case of spikeless spectra, Os content is always below the detection limit (b.d.l.). Rhodium content also is always b.d.l., while Ru content reaches 0.44 ppm, Ir – 0.08 ppm, and Pt – 0.03 ppm. The only element explicitly showing significant and homogenous presence in the awaruite is Pd, that content reaches 5.8 ppm in one analysis and 0.2–1.1 in many others.</p><p>These data indicate that in the studied case, awaruite mineralization is accompanied by the formation of PGM, while its role as a direct PGE concentrator is moderate and restricted to the first tenths ppm of Ru and Pd. Sulfides have shown much more impressive ability in concentrating PGE. Their selective enrichment in Os is a novelty and demands explanation.</p><p> </p><p>Author thanks Evgeniy Sidorov and Dima Kamenetsky for the assistance. CODES of UTAS is greatly acknowledged for the LA-ICP-MS analyses. This work was supported by the Russian Foundation for Basic Research (RFBR) grant No 20-05-00290 A.</p>


EKSPLORIUM ◽  
2020 ◽  
Vol 41 (2) ◽  
pp. 101
Author(s):  
Ronaldo Irzon

ABSTRAK Keterdapatan batuan gunung api di Sumatra diakibatkan oleh penunjaman Lempeng Samudra India-Australia ke bawah Lempeng West Sumatra sejak Eosen. Tanggamus adalah kabupaten di ujung selatan Lampung dengan keterdapatan beberapa unit batuan gunung api berumur Tersier maupun Kuarter. Studi ini bertujuan untuk membandingkan komposisi geokimia batuan gunung api Tersier Formasi Hulusimpang dengan batuan gunung api Kuarter Gunung Tanggamus. Perangkat XRF dan ICP-MS dimanfaatkan untuk mengetahui kadar oksida utama, unsur jejak, dan unsur tanah jarang pada penelitian ini. Berdasarkan karakter geokimia, sampel dari Formasi Hulusimpang adalah batuan gunung api kalk-alkali, metalumina hingga peralumina, dan dalam rentang trakiandesit basaltik hingga riolit. Sampel batuan gunung api berumur Kuarter berada pada rentang kadar silika yang lebih sempit dan cenderung metalumina. Studi ini membuktikan bahwa kedua kelompok batuan berasal dari magma yang sama, tetapi dengan kontaminasi kerak selama diferensiasi. Proses pembentukan yang berbeda pada kedua kelompok batuan diperjelas oleh derajat kemiringan kurva diagram laba-laba UTJ dan jenis anomali Eu.ABSTRACT The presence of volcanic rocks in Sumatra is due to the subduction of the Indian-Australian Ocean Plate under the West Sumatra Plate since the Eocene. Tanggamus Regency situated at the southern edge of Lampung with the occurrence of several Tertiary and Quaternary volcanic rock units. The aim of this study is to compare the geochemical composition of Tertiary volcanic rocks from the Hulusimpang Formation and Quaternary volcanic rocks from Mount Tanggamus in the Tanggamus Regency. XRF and ICP-MS devices were used to determine the compositions of major oxides, trace elements, and rare earth elements in this study. Based on geochemical characters, samples from the Hulusimpang Formation are calc-alkaline volcanic rocks, metaluminous to peraluminous, and in the basaltic trachyandesite to rhyolite ranges. Quaternary samples are in a narrower range of silica content and tend to be metaluminous. This study proves that the two rock groups originate from the same magma but with crustal contamination during differentiation. The two volcanic should experience through different formation processes based on the slope of the heavy-REE and the type of Eu anomaly.


1967 ◽  
Vol 31 ◽  
pp. 177-179
Author(s):  
W. W. Shane

In the course of several 21-cm observing programmes being carried out by the Leiden Observatory with the 25-meter telescope at Dwingeloo, a fairly complete, though inhomogeneous, survey of the regionl11= 0° to 66° at low galactic latitudes is becoming available. The essential data on this survey are presented in Table 1. Oort (1967) has given a preliminary report on the first and third investigations. The third is discussed briefly by Kerr in his introductory lecture on the galactic centre region (Paper 42). Burton (1966) has published provisional results of the fifth investigation, and I have discussed the sixth in Paper 19. All of the observations listed in the table have been completed, but we plan to extend investigation 3 to a much finer grid of positions.


Sign in / Sign up

Export Citation Format

Share Document