Numerical simulation of submarine landslide and generated tsunamis : Application to the Mayotte seismo-volcanic crisis

Author(s):  
Pablo Poulain ◽  
Anne Le Friant ◽  
Rodrigo Pedreros ◽  
Anne Mangeney ◽  
Andrea Filippini ◽  
...  

<p>Since May 2018, Mayotte island has experienced an important seismic activity linked to the on-going sismo-volcanic crisis. The epicenters of the seismic swarms are located between 5 and 15 km east of Petite Terre for the main swarm, and 25 km east of Petite Terre for the secondary swarm. Although variations in the number of earthquakes and their distribution have been observed since the start of the eruption in early July 2018 [Lemoine A.(2020), Cesca et al.(2020)], a continuous seismicity persists and could generate several earthquakes of magnitudes close to M4 widely felt by the population. This recurrent seismicity could weaken the steep submarine slopes of Mayotte, as highlighted by the high resolution bathymetry data collected during the MAYOBS cruise in May 2019 (Feuillet et al.,submitted) and trigger submarine landslides with associated tsunamis.</p><p>To address the hazards associated with such events, we analyzed morphological data to define 8 scenarios of potential submarine slides with volumes ranging from 11,25.10<sup>6</sup> to 800.10<sup>6</sup> m<sup>3</sup> and we simulate the landslide dynamics and generated waves. We use two complementary numerical models: (i) the code HYSEA to simulate the dynamic of the submarine granular flows and the water wave generation, and (ii) the Boussinesq FUNWAVE- TVD model simulate the waves propagation and the inundation on Mayotte. The effect of the time at which the models are coupled is investigated.</p><p>The most impacting submarine slide scenarios are located close to Petite Terre at a shallow depth. They can locally generate a sea surface elevation more than a meter in local areas especially at Petite Terre. The various simulations show that parts of the island are particularly sensitive to the risk of tsunamis. Indeed, some scenarios that does not cause significant coastal flooding still seems to cause significant hazards in these exposed areas. The barrier reef around Mayotte has a prominent role in controlling the wave propagation towards the island and therefore reducing the impact on land. It should be noted that the arrival of tsunamis on the coastline is not necessarily preceded by a retreat from the sea and the waves can reach the coasts of Mayotte very quicky (few minutes).</p><p> </p><p>Cesca, S., Letort, J., Razafindrakoto, H.N.T. et al. Drainage of a deep magma reservoir near Mayotte inferred from seismicity and deformation. Nat. Geosci. <strong>13, </strong>87–93 (2020). https://doi.org/10.1038/s41561-019-0505-5</p><p>Feuillet, N, Jorry, S. J., Crawford, W, Deplus, C. Thinon, I, Jacques, E. Saurel, J.M., Lemoine, A., Paquet, F., Daniel, R., Gaillot, A., Satriano, C., Peltier, A., Aiken, C., Foix, O., Kowalski, P., Laurent, A., Beauducel, F., Grandin, R., Ballu, V., Bernard, P., Donval, J.P., Geli, L., Gomez, J. Guyader, V., Pelleau, P., Rinnert, E., Bertil, D., Lemarchand, A., Van der Woerd, J.et al. (in rev). Birth of a large volcano offshore Mayotte through lithosphere-scale rifting, Nature.</p><p>Anne Lemoine, Pierre Briole, Didier Bertil, Agathe Roullé, Michael Foumelis, Isabelle Thinon, Daniel Raucoules, Marcello de Michele, Pierre Valty, Roser Hoste Colomer, The 2018–2019 seismo-volcanic crisis east of Mayotte, Comoros islands: seismicity and ground deformation markers of an exceptional submarine eruption, Geophysical Journal International, Volume 223, Issue 1, October 2020, Pages 22–44, https://doi.org/10.1093/gji/ggaa273</p>

2014 ◽  
Vol 567 ◽  
pp. 724-729 ◽  
Author(s):  
Indra Sati Hamonangan Harahap ◽  
Vo Nguyen Phu Huan

Submarine landslide is the most serious threat on both local and regional scales. Tsunami phenomenon induced by submarine slide has put us on the challenge in understanding from generation mechanism to propagation and coastal inundation and mitigating the risk from it. Submarine slides can trigger tsunamis with high run-up affecting offshore structures, subsea facilities and human lives along the shoreline. Unfortunately, there are no effective numerical models that could simulate simultaneously all stages of generation, propagation and run-up of tsunamis phenomena. This paper presents a comprehensive review on the landslide tsunami phenomenon.


Author(s):  
Ning Fan ◽  
Wangcheng Zhang ◽  
Fauzan Sahdi ◽  
Tingkai Nian

There are situations in offshore energy development where potential impact forces between submarine slides and pipelines need to be estimated. The horizontal slide-pipeline impact force, parallel to the main travel direction of the sliding mass and normal to the pipeline axis, is generally dominant compared to other force components, and hence of particular concern. In practice, pipelines may be suspended at varying distances above the seabed (gap) and existing methods do not consider how this will affect the horizontal slide-pipeline forces. This paper investigates the effects of pipeline-seabed gap and pipeline diameter on the horizontal slide-pipeline impact force via 181 computational fluid dynamics (CFD) simulations at Reynolds numbers of 0.36 - 287. Results show that variation in the pipeline-seabed gap and pipeline diameter alters the slide mass flow behavior as it flows past the pipeline and hence the impact force when the pipeline-seabed gap is below a critical value. A modified hybrid geotechnical-fluid dynamics framework for estimating the horizontal impact force is proposed by considering the effects of the pipeline-seabed gap and pipeline diameter, which is validated with existing experimental datasets.


2018 ◽  
Author(s):  
Laura Ràfols ◽  
Manel Grifoll ◽  
Manuel Espino

Abstract. Wave–Current Interactions (WCIs) are investigated. The study area is located at the northern margin of the Ebro Shelf (northwestern Mediterranean Sea), where episodes of strong cross-shelf wind (wind jets) occur. The aim of this study is to validate the implemented coupled system and investigate the impact of WCIs on the hydrodynamics of a wind-jet region. The Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system, which use Regional Ocean Model System (ROMS) and Simulating WAves Nearshore (SWAN) models, is used in a high-resolution domain (350 m). Results from uncoupled numerical models are compared with a two-way coupling simulation. The results do not show substantial differences in the water current field between the coupled and the uncoupled runs. The main effect observed when the waves are considered is in the water column stratification, due to the turbulent kinetic energy injection and the enhanced surface stress, leading a larger mixed-layer depth. Additionally, when the water currents are considered, the agreement of the modeled wave period significantly improves and the wave energy (and thus the significant wave height) decreases when the current flows in the same direction as the waves propagate.


2021 ◽  
Vol 11 (9) ◽  
pp. 4136
Author(s):  
Rosario Pecora

Oleo-pneumatic landing gear is a complex mechanical system conceived to efficiently absorb and dissipate an aircraft’s kinetic energy at touchdown, thus reducing the impact load and acceleration transmitted to the airframe. Due to its significant influence on ground loads, this system is generally designed in parallel with the main structural components of the aircraft, such as the fuselage and wings. Robust numerical models for simulating landing gear impact dynamics are essential from the preliminary design stage in order to properly assess aircraft configuration and structural arrangements. Finite element (FE) analysis is a viable solution for supporting the design. However, regarding the oleo-pneumatic struts, FE-based simulation may become unpractical, since detailed models are required to obtain reliable results. Moreover, FE models could not be very versatile for accommodating the many design updates that usually occur at the beginning of the landing gear project or during the layout optimization process. In this work, a numerical method for simulating oleo-pneumatic landing gear drop dynamics is presented. To effectively support both the preliminary and advanced design of landing gear units, the proposed simulation approach rationally balances the level of sophistication of the adopted model with the need for accurate results. Although based on a formulation assuming only four state variables for the description of landing gear dynamics, the approach successfully accounts for all the relevant forces that arise during the drop and their influence on landing gear motion. A set of intercommunicating routines was implemented in MATLAB® environment to integrate the dynamic impact equations, starting from user-defined initial conditions and general parameters related to the geometric and structural configuration of the landing gear. The tool was then used to simulate a drop test of a reference landing gear, and the obtained results were successfully validated against available experimental data.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 265
Author(s):  
Mihnea Cățeanu ◽  
Arcadie Ciubotaru

Laser scanning via LiDAR is a powerful technique for collecting data necessary for Digital Terrain Model (DTM) generation, even in densely forested areas. LiDAR observations located at the ground level can be separated from the initial point cloud and used as input for the generation of a Digital Terrain Model (DTM) via interpolation. This paper proposes a quantitative analysis of the accuracy of DTMs (and derived slope maps) obtained from LiDAR data and is focused on conditions common to most forestry activities (rough, steep terrain with forest cover). Three interpolation algorithms were tested: Inverse Distance Weighted (IDW), Natural Neighbour (NN) and Thin-Plate Spline (TPS). Research was mainly focused on the issue of point data density. To analyze its impact on the quality of ground surface modelling, the density of the filtered data set was artificially lowered (from 0.89 to 0.09 points/m2) by randomly removing point observations in 10% increments. This provides a comprehensive method of evaluating the impact of LiDAR ground point density on DTM accuracy. While the reduction of point density leads to a less accurate DTM in all cases (as expected), the exact pattern varies by algorithm. The accuracy of the LiDAR-derived DTMs is relatively good even when LiDAR sampling density is reduced to 0.40–0.50 points/m2 (50–60 % of the initial point density), as long as a suitable interpolation algorithm is used (as IDW proved to be less resilient to density reductions below approximately 0.60 points/m2). In the case of slope estimation, the pattern is relatively similar, except the difference in accuracy between IDW and the other two algorithms is even more pronounced than in the case of DTM accuracy. Based on this research, we conclude that LiDAR is an adequate method for collecting morphological data necessary for modelling the ground surface, even when the sampling density is significantly reduced.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 920
Author(s):  
Chukwuma Ogbonnaya ◽  
Chamil Abeykoon ◽  
Adel Nasser ◽  
Ali Turan

A system of transcendental equations (SoTE) is a set of simultaneous equations containing at least a transcendental function. Solutions involving transcendental equations are often problematic, particularly in the form of a system of equations. This challenge has limited the number of equations, with inter-related multi-functions and multi-variables, often included in the mathematical modelling of physical systems during problem formulation. Here, we presented detailed steps for using a code-based modelling approach for solving SoTEs that may be encountered in science and engineering problems. A SoTE comprising six functions, including Sine-Gordon wave functions, was used to illustrate the steps. Parametric studies were performed to visualize how a change in the variables affected the superposition of the waves as the independent variable varies from x1 = 1:0.0005:100 to x1 = 1:5:100. The application of the proposed approach in modelling and simulation of photovoltaic and thermophotovoltaic systems were also highlighted. Overall, solutions to SoTEs present new opportunities for including more functions and variables in numerical models of systems, which will ultimately lead to a more robust representation of physical systems.


2021 ◽  
pp. 107812
Author(s):  
Domenico Toscano ◽  
Massimo Marro ◽  
Benedetto Mele ◽  
Fabio Murena ◽  
Pietro Salizzoni

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 925
Author(s):  
Diogo Heitor ◽  
Isabel Duarte ◽  
João Dias-de-Oliveira

X-ray microcomputed tomography has been gaining relevance in the field of cellular materials to characterize materials and analyse their microstructure. So, here, it was used together with finite element modelling to develop numerical models to estimate the effective properties (Young’s modulus) of aluminium alloy foams and evaluate the effects of processing on the results. A manual global thresholding technique using the mass as a quality indicator was used. The models were reconstructed (Marching Cubes 33), then simplified and analysed in terms of mass and shape maintenance (Hausdorff distance algorithm) and face quality. Two simplification procedures were evaluated, with and without small structural imperfections, to evaluate the impact of the procedures on the results. Results demonstrate that the developed procedures are good at minimizing changes in mass and shape of the geometries while providing good face quality, i.e., face aspect ratio. The models are also shown to be able to predict the effective properties of metallic foams in accordance with the findings of other researchers. In addition, the process of obtaining the models and the presence of small structural imperfections were shown to have a great impact on the results.


2012 ◽  
Vol 10 (H16) ◽  
pp. 478-479
Author(s):  
Patrick Michel ◽  

AbstractNEOShield is a European-Union funded project coordinated by the German Aero-space Center, DLR, to address near-Earth object (NEO) impact hazard mitigation issues. The NEOShield consortium consists of 13 research institutes, universities, and industrial partners from 6 countries and includes leading US and Russian space organizations. The project is funded for a period of 3.5 years from January 2012 with a total of 5.8 million euros. The primary aim of the project is to investigate in detail promising mitigation techniques, such as the kinetic impactor, blast deflection, and the gravity tractor, and devise feasible demonstration missions. Options for an international strategy for implementation when an actual impact threat arises will also be investigated.The NEOShield work plan consists of scientific investigations into the nature of the impact hazard and the physical properties of NEOs, and technical and engineering studies of practical means of deflecting NEOs. There exist many ideas for asteroid deflection techniques, many of which would require considerable scientific and technological development. The emphasis of NEOShield is on techniques that are feasible with current technology, requiring a minimum of research and development work. NEOShield aims to provide detailed designs of feasible mitigation demonstration missions, targeting NEOs of the kind most likely to trigger the first space-based mitigation action.Most of the asteroid deflection techniques proposed to date require physical contact with the threatening object, an example being the kinetic impactor. NEOShield includes research into the mitigation-relevant physical properties of NEOs on the basis of remotely-sensed astronomical data and the results of rendezvous missions, the observational techniques required to efficiently gather mitigation-relevant data on the dynamical state and physical properties of a threatening NEO, and laboratory investigations using gas guns to fire projectiles into asteroid regolith analog materials. The gas-gun investigations enable state-of-the-art numerical models to be verified at small scales. Computer simulations at realistic NEO scales are used to investigate how NEOs with a range of properties would respond to a pulse of energy applied in a deflection attempt. The technical work includes the development of crucial technologies, such as the autonomous guidance of a kinetic impactor to a precise point on the surface of the target, and the detailed design of realistic missions for the purpose of demonstrating the applicability and feasibility of one or more of the techniques investigated. Theoretical work on the blast deflection method of mitigation is designed to probe the circumstances in which this last line of defense may be the only viable option and the issues relating to its deployment. A global response campaign roadmap will be developed based on realistic scenarios presented, for example, by the discovery of an object such as 99942 Apophis or 2011 AG5 on a threatening orbit. The work will include considerations of the timeline of orbit knowledge and impact probability development, reconnaissance observations and fly-by or rendezvous missions, the political decision to mount a mitigation attempt, and the design, development, and launch of the mitigation mission. Collaboration with colleagues outside the NEOShield Consortium involved in complementary activities (e.g. under the auspices of the UN, NASA, or ESA) is being sought in order to establish a broad international strategy.We present a brief overview of the history and planned scope of the project, and progress made to date.The NEOShield project (http://www.neoshield.net) has received funding from the European Union Seventh Framework Program (FP7/2007-2013) under Grant Agreement no. 282703.


Author(s):  
Pierangelo Duo´ ◽  
Christian Pianka ◽  
Andrej Golowin ◽  
Matthias Fueller ◽  
Roger Schaefer ◽  
...  

During operating service, gas turbine aero-engines can ingest small hard particles which typically produce damage to the aerofoils. If the damage found is a tear or a perforation at the leading edge, it is known as a Foreign Object Damage or FOD and this leads to a reduction of the subsequent High-Cycle-Fatigue (HCF) strength. The objective of research work in this area is to assess the effect of FOD on the residual fatigue strength of compressor blades and to provide predictive tools for engineering judgment. The methodology followed is normally to carry out experimental simulation of FOD, followed by fatigue tests to assess subsequent performance. To date, research related to fatigue following FOD events has concentrated on HCF loading and the impact geometry is frequently that of a sphere against a flat surface or the edge of a blade-like specimen. Both of these aspects do not correspond to the worst cases of real FOD. Here it is intended to investigate the effect of a V-notch geometry, which is more representative of severe FOD found in service. Alongside this, numerical models can be used to simulate the damage and to evaluate the residual stress field. In addition analytical model are used to predict the residual fatigue strength. The current work explains the development of a new rig impact test and discusses the improvements necessary to obtain a sufficient repeatability of the impacts. From the experience gained with a gas gun, an alternative method using a pistol and a barrel, capable of achieving the necessary velocity of simulated FOD, was developed. The applied velocity was in the range of 250m/s to 300m/s and a technique to describe the impact is here discussed. Furthermore the introduction of a high speed camera has allowed to have a complete description of the impact scene and to better understand the impact. The impacted blades were measured and HCF tested. As a result, this has produced a large scatter in the residual fatigue strength. The current method to describe a notch using a 2D approach, which was applied to several geometries of notches, is here critically reviewed. The proposed method would incorporate a more sophisticated method, which reconstruct the real geometry using optical measurement. This latter measurement can fully describe the 3D geometry, showing particularly zones inside the notch where compressive residual might appears. Tears and shear of the material can also be described by applying this technique. The findings are compared with the residual HCF strength and the results are compared to special cases of HCF to justify the results out of theoretical prediction.


Sign in / Sign up

Export Citation Format

Share Document