Long-term orogenic-scale paleofluid system across the Tuscan Nappe – Umbria-Marche Apennine Ridge (northern Apennines, Italy) as revealed by mesostructural and isotopic analyses of stylolite-vein networks

Author(s):  
Nicolas Beaudoin ◽  
Aurélie Labeur ◽  
Olivier Lacombe ◽  
Daniel Koehn ◽  
Andrea Billi ◽  
...  

<p>Faults, joints and stylolites are ubiquitous features in fold-and-thrust belts commonly used to reconstruct the past fluid flow (or plumbing system) at the scale of folded reservoir/basins. Through the textural and geochemical study of the minerals that fills the fractures, it is possible to understand the history of fluid flow in an orogen, requiring a good knowledge of the burial history and/or of the past thermal gradient. In most of the case, the latter derives from the former, itself often argued over, limiting the interpretations of past fluid temperatures. We present the results of a multi-proxy study that combines novel development in both structural analysis of a fracture-stylolite network and isotopic characterization of calcite vein cements/fault coating. Together with new paleopiezometric and radiometric constraints on burial evolution and deformation timing, these results provide a first-order picture of the regional fluid systems and pathways that were present during the main stages of contraction in the Tuscan Nappe and Umbria-Marche Apennine Ridge (Northern Apennines). We reconstruct four steps of deformation at the scale of the belt: burial-related stylolitization, Apenninic-related layer-parallel shortening with a contraction trending NE-SW, local extension related to folding and late stage fold tightening under a contraction still striking NE-SW. We combine the paleopiezometric inversion of the roughness of sedimentary stylolites - that provides a temperature-free constraint on the range of burial depth of strata prior to layer-parallel shortening -, with burial models and U-Pb absolute dating of fault coatings in order to determine the timing of development of mesostructures. In the western part of the ridge, layer-parallel shortening started in Langhian time (~15 Ma), then folding started at Tortonian time (~8 Ma), late stage fold tightening started by the early Pliocene (~5 Ma) and likely lasted until recent/modern extension occurred (~3 Ma onward). The textural and geochemical (δ<sup>18</sup>O, δ<sup>13</sup>C, ∆<sub>47</sub>CO<sub>2</sub> and <sup>87</sup>Sr/<sup>86</sup>Sr) study of calcite vein cements and fault coatings reveals that most of the fluids involved in the belt during deformation are basinal brines evolved from various degree of fluid rock interactions between pristine marine fluids (δ<sup>18</sup>O<sub>fluids</sub> = 0‰ SMOW) and surrounding limestones (δ<sup>18</sup>O<sub>fluids</sub> = 10‰ SMOW). The precipitation temperatures (35°C to 75°C) appear consistent with the burial history unraveled by sedimentary stylolite roughness paleopiezometry (600 m to 1500m in the range) and geothermal gradient (23°C/km). However, the western edge of the ridge recorded isotopically depleted past fluids of which corresponding precipitation temperature (100°C to 130°C) are inconsistent with local burial history (1500m). We interpret then pulses of eastward migration of hydrothermal fluids (>140°C), driven by the tectonic contraction and by the difference in structural style of the subsurface between the eastern Tuscan Nappe and the Umbria-Marche Apennine Ridge. Allowed by an unprecedented combination of paleopiezometry and isotopic geochemistry, this fluid flow model illustrates how the larger scale structures control the fluid system at the scale of the range.</p>

Solid Earth ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 1617-1641 ◽  
Author(s):  
Nicolas E. Beaudoin ◽  
Aurélie Labeur ◽  
Olivier Lacombe ◽  
Daniel Koehn ◽  
Andrea Billi ◽  
...  

Abstract. We report the results of a multiproxy study that combines structural analysis of a fracture–stylolite network and isotopic characterization of calcite vein cements and/or fault coating. Together with new paleopiezometric and radiometric constraints on burial evolution and deformation timing, these results provide a first-order picture of the regional fluid systems and pathways that were present during the main stages of contraction in the Tuscan Nappe and Umbria–Marche Apennine Ridge (northern Apennines). We reconstruct four steps of deformation at the scale of the belt: burial-related stylolitization, Apenninic-related layer-parallel shortening with a contraction trending NE–SW, local extension related to folding, and late-stage fold tightening under a contraction still striking NE–SW. We combine the paleopiezometric inversion of the roughness of sedimentary stylolites – that constrains the range of burial depth of strata prior to layer-parallel shortening – with burial models and U–Pb absolute dating of fault coatings in order to determine the timing of development of mesostructures. In the western part of the ridge, layer-parallel shortening started in Langhian time (∼15 Ma), and then folding started at Tortonian time (∼8 Ma); late-stage fold tightening started by the early Pliocene (∼5 Ma) and likely lasted until recent/modern extension occurred (∼3 Ma onward). The textural and geochemical (δ18O, δ13C, Δ47CO2 and 87Sr∕86Sr) study of calcite vein cements and fault coatings reveals that most of the fluids involved in the belt during deformation either are local or flowed laterally from the same reservoir. However, the western edge of the ridge recorded pulses of eastward migration of hydrothermal fluids (>140 ∘C), driven by the tectonic contraction and by the difference in structural style of the subsurface between the eastern Tuscan Nappe and the Umbria–Marche Apennine Ridge.


2020 ◽  
Author(s):  
Nicolas Beaudoin ◽  
Aurélie Labeur ◽  
Olivier Lacombe ◽  
Daniel Koehn ◽  
Andrea Billi ◽  
...  

Abstract. We report the results of a multi-proxy study that combines structural analysis of fracture-stylolite network and isotopic characterization of calcite vein cements/fault coating. Together with new paleopiezometric and radiometric constraints on burial evolution and deformation timing, these results provide a first-order picture of the regional fluid pathways network during the main stages of contraction in the Tuscan Nappe and Umbria Marche arcuate ridge (Northern Apennines).We reconstruct four continuous steps of deformation at the scale of the belt: burial that developed sedimentary stylolites, Apenninic-related layer parallel shortening with a contraction striking NE-SW, local extension related to folding, then a late stage of fold tightening under a contraction still striking NE-SW. In order to assess the timing and burial depth of strata at all stages, we combine a paleopiezometric tool based on inversion of the roughness of sedimentary stylolites that constrains the range of burial depth of strata prior to layer-parallel shortening, with burial models and U-Pb absolute dating of fault coatings. In the western part of the ridge, layer-parallel shortening started in Serravalian time (~ 12 Ma), then folding started at Tortonian time (~ 8 Ma), late stage fold tightening started in early Zanclean (~ 5 Ma) and likely lasted until recent/modern extension occurred (~ 3 Ma onward). This timing provides important constraints on the temperature that expectedly prevailed in the studied strata through its history. The textural and geochemical (δ18O, δ13C, Δ47CO2 and 87Sr/86Sr) study of calcite vein cements and fault coatings reveals that most of the fluids involved in the belt during deformation are local, or flowed laterally from the same reservoir. However, the western edge of the ridge recorded pulses of eastward squeegee-type migration of hydrothermal fluids (> 140 °C), that can be related to the difference in structural style of the subsurface between the eastern Tuscan Nappe and the Umbria Marche Ridge.


2020 ◽  
Author(s):  
Nicolas Beaudoin ◽  
Aurélie Labeur ◽  
Olivier Lacombe ◽  
Guilhem Hoareau ◽  
Marta Marchegiano ◽  
...  

<p>Faults, joints and stylolites are ubiquitous features in fold-and-thrust belts, and have been used for decades to reconstruct the past fluid flow (or plumbing system) at the scale of folded reservoirs/basins. The textural and geochemical study of the minerals filling the fractures makes it possible to unravel the history of fluid flow in an orogen, when combined with a knowledge of the burial history and/or of the paleothermal gradient. In most cases, the latter derives from the former, itself often argued over, limiting the interpretations of past fluid temperatures. Yet, recent methodological developments applied to carbonates and calcite fillings provide new perspectives for a more accurate reconstruction of the temperature, pressure and timing of the fluids that were present in the strata at the time they deformed, at every stage of fold development. Indeed, the temperature at which fluids precipitated can be obtained by Δ<sup>47</sup>CO2 clumped isotopes while the timing of calcite precipitation in veins and faults is given by U-Pb absolute dating. Also, the maximum burial depth of strata before contraction can be estimated using sedimentary stylolite paleopiezometry, hence in a way free of any consideration about the geothermal gradient.<br><br>These techniques were jointly applied at the scale of the Umbria-Marches arcuate belt (UMAR, Northen Apennines, Italy). Mesoscale faults and vein sets were measured and sampled in the Cretaceous-Eocene rocks. Focusing on those fractures that developed during Layer Parallel Shortening (LPS, i.e. oriented NE-SW to E-W) and during folding (i.e. oriented parallel to local fold axis), paleofluid sources, temperatures and timing were reconstructed using U-Pb absolute dating, Δ<sup>47</sup>CO2 clumped isotopes as well as δ<sup>18</sup>O, δ<sup>13</sup>C, and <sup>87/86</sup>Sr signatures of calcite veins. Results show a regional divide in the fluid system, with most of the belt including the foreland recording a fluid system involving basinal brines resulting at various degree from fluid-rock interactions (FRI) between pristine marine fluids (δ<sup>18</sup>O<sub>fluid</sub><span>= 0‰ SMOW) and surrounding limestones (δ<sup>18</sup>O<sub>fluid</sub>= 10‰ SMOW). Precipitation temperatures (35°C to 75°C) appear consistent with the burial history unraveled by sedimentary stylolite roughness paleopiezometry (600 m to 1500m in the range) and estimated geothermal gradient (23°C/km, Caricchi et al., 2004). As the degree of FRI increases forelandward, we propose a lateral, strata-bound, squeegee-type migration of fluids during folding and thrusting. In the western hinterland however, the fluid system rather involves hydrothermal fluids with a higher degree of FRI, the corresponding precipitation temperatures (100°C to 130°C) of which are inconsistent with local maximum burial (1500m). As the Sr radiogenic signatures preclude any deep origin of the fluids, we propose that the fluid system prevailing in the hinterland during LPS reflects the eastward migration of formational fluids originating from the Tuscan basin, located west from the UMAR, where studied Cretaceous rocks were buried under more than 4 km of sediments during the Miocene.</span></p><p><br>Beyond being the first combination of paleofluid geochemistry and burial estimates through paleopiezometry, this fluid flow model illustrates how the large scale structures may control the fluid system at the scale of a mountain belt.</p>


Author(s):  
On Shun Pak ◽  
Eric Lauga

Small-scale locomotion plays an important role in biology. Different modelling approaches have been proposed in the past. The simplest model is an infinite inextensible two-dimensional waving sheet, originally introduced by Taylor, which serves as an idealized geometrical model for both spermatozoa locomotion and ciliary transport in Stokes flow. Here, we complement classic steady-state calculations by deriving the transient low-Reynolds number swimming speed of such a waving sheet when starting from rest (small-amplitude initial-value problem). We also determine the transient fluid flow in the ‘pumping’ setup where the sheet is not free to move but instead generates a net fluid flow around it. The time scales for these two problems, which in general govern transient effects in transport and locomotion at low Reynolds numbers, are also derived using physical arguments.


2014 ◽  
Vol 10 (1) ◽  
pp. 809-857 ◽  
Author(s):  
P. Zennaro ◽  
N. Kehrwald ◽  
J. R. McConnell ◽  
S. Schüpbach ◽  
O. Maselli ◽  
...  

Abstract. Biomass burning is a major source of greenhouse gases and influences regional to global climate. Pre-industrial fire-history records from black carbon, charcoal and other proxies provide baseline estimates of biomass burning at local to global scales, but there remains a need for broad-scale fire proxies that span millennia in order to understand the role of fire in the carbon cycle and climate system. We use the specific biomarker levoglucosan, and multi-source black carbon and ammonium concentrations to reconstruct fire activity from the North Greenland Eemian (NEEM) ice cores (77.49° N; 51.2° W, 2480 m a.s.l.) over the past 2000 years. Increases in boreal fire activity (1000–1300 CE and 1500–1700 CE) over multi-decadal timescales coincide with the most extensive central and northern Asian droughts of the past two millennia. The NEEM biomass burning tracers coincide with temperature changes throughout much of the past 2000 years except for during the extreme droughts, when precipitation changes are the dominant factor. Many of these multi-annual droughts are caused by monsoon failures, thus suggesting a connection between low and high latitude climate processes. North America is a primary source of biomass burning aerosols due to its relative proximity to the NEEM camp. During major fire events, however, isotopic analyses of dust, back-trajectories and links with levoglucosan peaks and regional drought reconstructions suggest that Siberia is also an important source of pyrogenic aerosols to Greenland.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1060
Author(s):  
Hiroshi Hidaka

Isotopic analyses of elements in the natural reactor materials have often been performed to understand the distribution behaviors of the fission products and to evaluate the function of nuclear reactions since the first discovery of a natural reactor in 1972. Several types of unique microminerals, including significant amounts of fission products, have been found in and around the Oklo and the Bangombé natural reactors. In the past two decades, microbeam techniques using ion and laser probe facilities have been effectively applied for the in situ isotopic analyses of individual microminerals to investigate the migration behaviors of fissiogenic radioisotopes produced in the reactors. This paper presents a review of interpretations of the isotopic results of microminerals found in and around the natural reactors.


Science ◽  
2021 ◽  
Vol 371 (6525) ◽  
pp. 164-167
Author(s):  
Simon Turner ◽  
Lucy McGee ◽  
Munir Humayun ◽  
John Creech ◽  
Brigitte Zanda

Carbonaceous chondritic meteorites are primordial Solar System materials and a source of water delivery to Earth. Fluid flow on the parent bodies of these meteorites is known to have occurred very early in Solar System history (first <4 million years). We analyze short-lived uranium isotopes in carbonaceous chondrites, finding excesses of 234-uranium over 238-uranium and 238-uranium over 230-thorium. These indicate that the fluid-mobile uranium ion U6+ moved within the past few 100,000 years. In some meteorites, this time scale is less than the cosmic-ray exposure age, which measures when they were ejected from their parent body into space. Fluid flow occurred after melting of ice, potentially by impact heating, solar heating, or atmospheric ablation. We favor the impact heating hypothesis, which implies that the parent bodies still contain ice.


Author(s):  
J. Rousselet ◽  
G. Herrmann

This paper presents the analysis of a system of articulated pipes hanging vertically under the influence of gravity. The liquid, driven by a slightly fluctuating pressure, circulates through the pipes. Similar systems have been analysed in the past by numerous authors but a common feature of their work is that the behavior of the fluid flow is prescribed, rather than left to be determined by the laws of motion. This leads to a linear formulation of the problem which can not predict the behavior of the system for finite amplitudes of motion. A circumstance in which this behavior is important arises in the stability analysis of the system in the neighbourhood of critical velocities, that is, flow velocities at which the system starts to flutter. Hence, the purpose of the present study was to investigate in greater detail the region close to critical velocities in order to find by how much these critical velocities would be affected by the amplitudes of motion. This led to a set of three coupled-nonlinear equations, one of which represents the motion of the fluid. In the mathematical development, use is made of a scheme which permits the uncoupling of the modes of motion of damped nonconservative dynamic systems. Results are presented showing the importance of the nonlinearities considered.


2019 ◽  
Vol 474 (474) ◽  
pp. 31-42
Author(s):  
Aleksandra Kozłowska

Carbonate minerals in the Middle Jurassic sideritic rocks from the Polish Lowlands, north-eastern margin of the Holy Cross Mountains and the Częstochowa region have been studied applying accessible instrumental methods. The following techniques were applied: polarization microscope, staining with the Evamy’s solution, cathodoluminescence, microprobe, fluid inclusions and isotopic analyses. Most of these methods were not available either in the 20ies of the past century when studies of sideritic iron ores in Poland had begun, or in 50ies and 60ies when they were in full progress. The sideritic rocks are mainly represented by clayey siderites (they contain also muddy and sandy varieties), sideritic sandstones and sideritic coquina, less frequently by sideritic conglomerates and mudstones. Sideroplesite is the main carbonate mineral that builds the sideritic rocks, while pistomesite and siderite are less frequent. Fe-calcite and Fe-dolomite, ankerite, and sporadic dolomite occur in lesser amounts. Syderoplesite and siderite have crystallized in the early diagenesis (eodiagenesis), in the zone of microbiologic methanogenesis, at temperatures of about 20°C, from the porous waters of marine origin, or from marine waters mixed with fresh waters. Sideroplesite enriched in magnesium, pistomesite, calcite and ankerite sequently have formed at the later diagenetic stage (mezodiagenesis). These minerals have crystallized at temperatures above 60°C, from the porous waters of marine origin, or from the fluid which interacted with the adjacent rocks. Fe-calcite was formed in the zone of microbiologic methanogenesis, while the ankerite – in the zone of thermal decarboxylation.


Sign in / Sign up

Export Citation Format

Share Document