calcite vein
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 14)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
pp. 120582
Author(s):  
George R. Dix ◽  
Donald W. Davis ◽  
Kamil Chadirji-Martinez ◽  
Daniel D. Marshall ◽  
Jill L. Kendrick ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
John P. Craddock ◽  
et. al

Appendix 1: Fluid inclusion data (1 file, 5 tabs); Appendix 2: U-Pb data table, including standards (and T-W plots); Appendix 3: GFS-5 optic axis stereoplots.


2021 ◽  
Author(s):  
John P. Craddock ◽  
et. al

Appendix 1: Fluid inclusion data (1 file, 5 tabs); Appendix 2: U-Pb data table, including standards (and T-W plots); Appendix 3: GFS-5 optic axis stereoplots.


2021 ◽  
Author(s):  
Nicolas Beaudoin ◽  
Aurélie Labeur ◽  
Olivier Lacombe ◽  
Daniel Koehn ◽  
Andrea Billi ◽  
...  

<p>Faults, joints and stylolites are ubiquitous features in fold-and-thrust belts commonly used to reconstruct the past fluid flow (or plumbing system) at the scale of folded reservoir/basins. Through the textural and geochemical study of the minerals that fills the fractures, it is possible to understand the history of fluid flow in an orogen, requiring a good knowledge of the burial history and/or of the past thermal gradient. In most of the case, the latter derives from the former, itself often argued over, limiting the interpretations of past fluid temperatures. We present the results of a multi-proxy study that combines novel development in both structural analysis of a fracture-stylolite network and isotopic characterization of calcite vein cements/fault coating. Together with new paleopiezometric and radiometric constraints on burial evolution and deformation timing, these results provide a first-order picture of the regional fluid systems and pathways that were present during the main stages of contraction in the Tuscan Nappe and Umbria-Marche Apennine Ridge (Northern Apennines). We reconstruct four steps of deformation at the scale of the belt: burial-related stylolitization, Apenninic-related layer-parallel shortening with a contraction trending NE-SW, local extension related to folding and late stage fold tightening under a contraction still striking NE-SW. We combine the paleopiezometric inversion of the roughness of sedimentary stylolites - that provides a temperature-free constraint on the range of burial depth of strata prior to layer-parallel shortening -, with burial models and U-Pb absolute dating of fault coatings in order to determine the timing of development of mesostructures. In the western part of the ridge, layer-parallel shortening started in Langhian time (~15 Ma), then folding started at Tortonian time (~8 Ma), late stage fold tightening started by the early Pliocene (~5 Ma) and likely lasted until recent/modern extension occurred (~3 Ma onward). The textural and geochemical (δ<sup>18</sup>O, δ<sup>13</sup>C, ∆<sub>47</sub>CO<sub>2</sub> and <sup>87</sup>Sr/<sup>86</sup>Sr) study of calcite vein cements and fault coatings reveals that most of the fluids involved in the belt during deformation are basinal brines evolved from various degree of fluid rock interactions between pristine marine fluids (δ<sup>18</sup>O<sub>fluids</sub> = 0‰ SMOW) and surrounding limestones (δ<sup>18</sup>O<sub>fluids</sub> = 10‰ SMOW). The precipitation temperatures (35°C to 75°C) appear consistent with the burial history unraveled by sedimentary stylolite roughness paleopiezometry (600 m to 1500m in the range) and geothermal gradient (23°C/km). However, the western edge of the ridge recorded isotopically depleted past fluids of which corresponding precipitation temperature (100°C to 130°C) are inconsistent with local burial history (1500m). We interpret then pulses of eastward migration of hydrothermal fluids (>140°C), driven by the tectonic contraction and by the difference in structural style of the subsurface between the eastern Tuscan Nappe and the Umbria-Marche Apennine Ridge. Allowed by an unprecedented combination of paleopiezometry and isotopic geochemistry, this fluid flow model illustrates how the larger scale structures control the fluid system at the scale of the range.</p>


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Motian Tang ◽  
Zhonghu Wu ◽  
Anli Wang ◽  
Yujun Zuo ◽  
Yili Lou ◽  
...  

The Niutitang Formation shale is often filled with calcite minerals, which significantly affects the physical and mechanical properties of shale reservoirs. To correctly understand the microscale fracture characteristics of the Niutitang Formation shale and the evolution of acoustic emission signals, this paper uses digital image processing technology to characterize the geometric characteristics and nonuniform distribution of calcite minerals in the shale at the microscale and then maps it to finite elements; uniaxial compression tests of different calcite vein inclination angles are carried out on a microscale. The results show that under the microscale structure, the changes in compressive strength and brittleness index of the Niutitang Formation shale with different calcite vein dip angles are all N-shaped. The calcite veins affect the distribution of the stress field, leading to significant differences in the shale fracture process and fracture mode. The shale fracture process can be divided into two types. The first type (0°, 15°, 30°, 45°) is that the shale matrix is destroyed first, and then, the calcite veins are destroyed; the second type (60°, 75°, 90°) is that the calcite veins are destroyed first, and then, the shale matrix is destroyed. Shale fracture modes can be divided into w-type, v-type, inverted v-type, and inverted z-type. The inclination angle of calcite veins has a significant influence on the AE evolution characteristics of the Niutitang Formation shale. According to the characteristics of the AE active period, it can be divided into two types: surge type and step type. The surge type has a short active period, the number of AE count surges is small, the AE peak is large, and the failure mode is relatively simple. The step type has a long active period, the number of AE count surges is large, and the AE peak is small, and the failure mode is relatively complicated. The research results provide important theoretical guidance for shale gas fracturing mining.


Solid Earth ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 1969-1985
Author(s):  
Jace M. Koger ◽  
Dennis L. Newell

Abstract. The Hurricane fault is a ∼250 km long, west-dipping, segmented normal fault zone located along the transition between the Colorado Plateau and the Basin and Range tectonic provinces in the western USA. Extensive evidence of fault–fluid interaction includes calcite mineralization and veining. Calcite vein carbon (δ13CVPDB) and oxygen (δ18OVPDB) stable isotope ratios range from −4.5 ‰ to 3.8 ‰ and from −22.1 ‰ to −1.1 ‰, respectively. Fluid inclusion microthermometry constrains paleofluid temperatures and salinities from 45 to 160 ∘C and from 1.4 wt % to 11.0 wt % as NaCl, respectively. These data suggest mixing between two primary fluid sources, including infiltrating meteoric water (70±10 ∘C, ∼1.5 wt % NaCl, δ18OVSMOW ∼-10 ‰) and sedimentary brine (100±25 ∘C, ∼11 wt % NaCl, δ18OVSMOW ∼ 5 ‰). Interpreted carbon sources include crustal- or magmatic-derived CO2, carbonate bedrock, and hydrocarbons. Uranium–thorium (U–Th) dates from five calcite vein samples indicate punctuated fluid flow and fracture healing at 539±10.8 (1σ), 287.9±5.8, 86.2±1.7, and 86.0±0.2 ka in the upper 500 m of the crust. Collectively, data predominantly from the footwall damage zone imply that the Hurricane fault imparts a strong influence on the regional flow of crustal fluids and that the formation of veins in the shallow parts of the fault damage zone has important implications for the evolution of fault strength and permeability.


AAPG Bulletin ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 2401-2428
Author(s):  
Lianqi Jia ◽  
Chunfang Cai ◽  
Zhenliang Wang ◽  
Hongxia Li ◽  
Lijing Liu ◽  
...  

Solid Earth ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 1617-1641 ◽  
Author(s):  
Nicolas E. Beaudoin ◽  
Aurélie Labeur ◽  
Olivier Lacombe ◽  
Daniel Koehn ◽  
Andrea Billi ◽  
...  

Abstract. We report the results of a multiproxy study that combines structural analysis of a fracture–stylolite network and isotopic characterization of calcite vein cements and/or fault coating. Together with new paleopiezometric and radiometric constraints on burial evolution and deformation timing, these results provide a first-order picture of the regional fluid systems and pathways that were present during the main stages of contraction in the Tuscan Nappe and Umbria–Marche Apennine Ridge (northern Apennines). We reconstruct four steps of deformation at the scale of the belt: burial-related stylolitization, Apenninic-related layer-parallel shortening with a contraction trending NE–SW, local extension related to folding, and late-stage fold tightening under a contraction still striking NE–SW. We combine the paleopiezometric inversion of the roughness of sedimentary stylolites – that constrains the range of burial depth of strata prior to layer-parallel shortening – with burial models and U–Pb absolute dating of fault coatings in order to determine the timing of development of mesostructures. In the western part of the ridge, layer-parallel shortening started in Langhian time (∼15 Ma), and then folding started at Tortonian time (∼8 Ma); late-stage fold tightening started by the early Pliocene (∼5 Ma) and likely lasted until recent/modern extension occurred (∼3 Ma onward). The textural and geochemical (δ18O, δ13C, Δ47CO2 and 87Sr∕86Sr) study of calcite vein cements and fault coatings reveals that most of the fluids involved in the belt during deformation either are local or flowed laterally from the same reservoir. However, the western edge of the ridge recorded pulses of eastward migration of hydrothermal fluids (>140 ∘C), driven by the tectonic contraction and by the difference in structural style of the subsurface between the eastern Tuscan Nappe and the Umbria–Marche Apennine Ridge.


2020 ◽  
Author(s):  
Jace M. Koger ◽  
Dennis L. Newell

Abstract. The Hurricane Fault is a ~250-km-long, west-dipping normal fault located along the transition between the Colorado Plateau and Basin and Range tectonic provinces in the western U.S. Extensive evidence of fluid-fault interaction, including calcite mineralization and veining, occur in the footwall damage zone. Calcite vein carbon (δ13CVPDB) and oxygen (δ18OVPDB) stable isotope ratios range from −4.5 to 3.8 ‰ and −22.1 to −1.1 ‰, respectively. Fluid inclusion microthermometry constrain paleofluid temperatures and salinities from 45–160 °C and 1.4–11.0 wt % as NaCl, respectively. These data identify mixing between two primary fluid sources including infiltrating meteoric groundwater (70 ± 10 °C, ~1.5 wt % NaCl, δ18OSMOW ~−10 ‰) and sedimentary brine (100 ± 25 °C, ~11 wt % NaCl, δ18OSMOW ~5 ‰). Interpreted carbon sources include crustal- or magmatic-derived CO2, carbonate bedrock, and hydrocarbons. U-Th dates from 5 calcite vein samples indicates punctuated fluid-flow and fracture healing at 539 ± 10.8, 287.9 ± 5.8, 86.2 ± 1.7, and 86.0 ± 0.2 ka in the upper 300 m of the crust. Collectively, the data imply that the Hurricane Fault imparts a strong influence on regional flow of crustal fluids, and that the formation of veins in the shallow parts of the fault damage zone has important implications for the evolution of fault strength and permeability.


Sign in / Sign up

Export Citation Format

Share Document