scholarly journals Daytime low-level clouds in West Africa – occurrence, associated drivers, and shortwave radiation attenuation

2020 ◽  
Vol 11 (4) ◽  
pp. 1133-1152
Author(s):  
Derrick K. Danso ◽  
Sandrine Anquetin ◽  
Arona Diedhiou ◽  
Kouakou Kouadio ◽  
Arsène T. Kobea

Abstract. This study focuses on daytime low-level clouds (LLCs) that occur within the first 2 km of the atmosphere over West Africa (WA). These daytime LLCs play a major role in the earth's radiative balance, yet their understanding is still relatively low in WA. We use the state-of-the-art ERA5 dataset to understand their occurrence and associated drivers as well as their impact on the incoming surface solar radiation in the two contrasting Guinean and Sahelian regions of WA. The diurnal cycle of the daytime occurrence of three LLC classes namely No LCC, LLC Class-1 (LLCs with lower fraction), and LLC Class-2 (LLCs with higher fraction) is first studied. The monthly evolutions of hourly and long-lasting LLC (for at least 6 consecutive hours) events are then analyzed as well as the synoptic-scale moisture flux associated with the long-lasting LLC events. Finally, the impact of LLC on the surface heat fluxes and the incoming solar irradiance is investigated. During the summer months in the Guinean region, LLC Class-1 occurrence is low, while LLC Class-2 is frequent (occurrence frequency around 75 % in August). In the Sahel, LLC Class-1 is dominant in the summer months (occurrence frequency more than 80 % from June to October); however the peak occurrence frequency of Class-2 is also in the summer. In both regions, events with No LLC do not present any specific correlation with the time of the day. However, a diurnal evolution that appears to be strongly different from one region to the other is noted for the occurrence of LLC Class-2. LLC occurrence in both regions is associated with high moisture flux driven by strong southwesterly winds from the Gulf of Guinea and significant background moisture levels. LLC Class-2 in particular leads to a significant reduction in the upward transfer of energy and a net downward energy transfer caused by the release of large amounts of energy in the atmosphere during the cloud formation. In July, August, and September (JAS), most of the LLC Class-2 events may likely be the low-level stratiform clouds that occur frequently over the Guinean region, while they may be deep convective clouds in the Sahel. Additionally, LLC Class-2 causes high attenuation of the incoming solar radiation, especially during JAS, where about 49 % and 44 % of the downwelling surface shortwave radiation is lost on average in Guinea and the Sahel, respectively.

2020 ◽  
Author(s):  
Derrick K. Danso ◽  
Sandrine Anquetin ◽  
Arona Diedhiou ◽  
Kouakou Kouadio ◽  
Arsène T. Kobea

Abstract. This study focuses on low-level clouds (LLC) that occur during the daytime over West Africa (WA). These daytime LLCs play a major role in the earth's radiative balance, yet, their understanding is still relatively low in WA. We use the state-of-the-art ERA5 dataset to understand their occurrence and associated drivers as well as their impact on the incoming surface solar radiation in the two contrasting Guinean and Sahelian regions of WA. The diurnal cycle of the daytime occurrence of three LLC classes namely No LCC, LLC Class-1 (LLCs with lower fraction), and LLC Class-2 (LLCs with higher fraction) are first studied. The monthly evolutions of hourly and long-lasting LLC (for at least 6 consecutive hours) events are then analyzed as well as the synoptic and local dynamics associated with the long-lasting LLC events. The occurrence of No LLC events does not present any specific correlation with the time of the day, whatever the region while as soon as LLC coverage becomes more pronounced (LLC Class-2), a diurnal evolution is noted and appears to be strongly different from one region to the other. During the summer months in the Guinean region, the occurrence of LLC Class-1 is low while LLC Class-2 is frequent (occurrence frequency around 75 % in August). In the Sahel, LLC Class-1 is dominant in the summer months (occurrence frequency more than 80 % from June to October), however the peak occurrence frequency of Class-2 is also in the summer. In both regions, the occurrence of LLCs during the rainy season is associated with an influx of cold moist air driven by strong southwesterly winds from the Guinean Gulf. Furthermore, the occurrence of LLC Class-2 is linked to strong surface heating and evaporation of soil moisture. During the dry season on the hand, the occurrence of LLCs is linked more to turbulent upward motion of air caused by surface heating (only in the Sahel) and the convergence of air masses near the surface. The results also showed that the occurrence of LLC Class-2 causes high attenuation of the incoming solar radiation, especially during JAS where about 49 % and 44 % of the downwelling surface shortwave radiation is lost on average in Guinea and Sahel respectively.


2018 ◽  
Vol 9 (1) ◽  
pp. 313-338 ◽  
Author(s):  
Adjoua Moise Famien ◽  
Serge Janicot ◽  
Abe Delfin Ochou ◽  
Mathieu Vrac ◽  
Dimitri Defrance ◽  
...  

Abstract. The objective of this paper is to present a new dataset of bias-corrected CMIP5 global climate model (GCM) daily data over Africa. This dataset was obtained using the cumulative distribution function transform (CDF-t) method, a method that has been applied to several regions and contexts but never to Africa. Here CDF-t has been applied over the period 1950–2099 combining Historical runs and climate change scenarios for six variables: precipitation, mean near-surface air temperature, near-surface maximum air temperature, near-surface minimum air temperature, surface downwelling shortwave radiation, and wind speed, which are critical variables for agricultural purposes. WFDEI has been used as the reference dataset to correct the GCMs. Evaluation of the results over West Africa has been carried out on a list of priority user-based metrics that were discussed and selected with stakeholders. It includes simulated yield using a crop model simulating maize growth. These bias-corrected GCM data have been compared with another available dataset of bias-corrected GCMs using WATCH Forcing Data as the reference dataset. The impact of WFD, WFDEI, and also EWEMBI reference datasets has been also examined in detail. It is shown that CDF-t is very effective at removing the biases and reducing the high inter-GCM scattering. Differences with other bias-corrected GCM data are mainly due to the differences among the reference datasets. This is particularly true for surface downwelling shortwave radiation, which has a significant impact in terms of simulated maize yields. Projections of future yields over West Africa are quite different, depending on the bias-correction method used. However all these projections show a similar relative decreasing trend over the 21st century.


2008 ◽  
Vol 21 (24) ◽  
pp. 6636-6648 ◽  
Author(s):  
Christopher M. Taylor

Abstract Via its impact on surface fluxes, subseasonal variability in soil moisture has the potential to feed back on regional atmospheric circulations, and thereby rainfall. An understanding of this feedback mechanism in the climate system has been hindered by the lack of observations at an appropriate scale. In this study, passive microwave data at 10.65 GHz from the Tropical Rainfall Measuring Mission satellite are used to identify soil moisture variability during the West African monsoon. A simple model of surface sensible heat flux is developed from these data and is used, alongside atmospheric analyses from the European Centre for Medium-Range Weather Forecasting (ECMWF), to provide a new interpretation of monsoon variability on time scales of the order of 15 days. During active monsoon periods, the data indicate extensive areas of wet soil in the Sahel. The impact of the resulting weak surface heat fluxes is consistent in space and time with low-level variations in atmospheric heating and vorticity, as depicted in the ECMWF analyses. The surface-induced vorticity structure is similar to previously documented intraseasonal variations in the monsoon flow, notably a westward-propagating vortex at low levels. In those earlier studies, the variability in low-level flow was considered to be the critical factor in producing intraseasonal fluctuations in rainfall. The current analysis shows that this vortex can be regarded as an effect of the rainfall (via surface hydrology) as well as a cause.


2019 ◽  
Author(s):  
Radiance Calmer ◽  
Gregory C. Roberts ◽  
Kevin J. Sanchez ◽  
Jean Sciare ◽  
Karine Sellegri ◽  
...  

Abstract. In the framework of the EU-FP7 BACCHUS project, an intensive field campaign was performed in Cyprus (2015/03). Remotely Piloted Aircraft System (RPAS), ground-based instruments, and remote-sensing observations were operating in parallel to provide an integrated characterization of aerosol-cloud interactions. Remotely Piloted Aircraft (RPA) were equipped with a 5-hole probe, pyranometers, pressure, temperature and humidity sensors, and measured updraft velocity at cloud base and cloud optical properties of a stratocumulus layer. Ground-based measurements of dry aerosol size distributions and cloud condensation nuclei spectra, and RPA observations of vertical wind velocity and meteorological state parameters are used here to initialize an Aerosol–Cloud Parcel Model (ACPM) and compare the in situ observations of cloud optical properties measured by the RPA to those simulated in the ACPM. Two different cases are studied with the ACPM, including an adiabatic case and an entrainment case, in which the in-cloud temperature profile from RPA is taken into account. Adiabatic ACPM simulation yields cloud droplet number concentrations at cloud base (ca. 400 cm−3) that are similar to those derived from a Hoppel minimum analysis. Cloud optical properties have been inferred using the transmitted fraction of shortwave radiation profile measured by downwelling and upwelling pyranometers mounted on a RPA, and the observed transmitted fraction of solar radiation is then compared to simulations from the ACPM. ACPM simulations and RPA observations show better agreement when associated with entrainment compared to that of an adiabatic case. The mean difference between observed and adiabatic profiles of transmitted fraction of solar radiation is 0.12, while this difference is only 0.03 between observed and entrainment profiles. A sensitivity calculation is then conducted to quantify the relative impacts of two-fold changes in aerosol concentration, and updraft velocity to highlight the importance of accounting for the impact of entrainment in deriving cloud optical properties, as well as the ability of RPAs to leverage ground-based observations for studying aerosol–cloud interactions.


1996 ◽  
Vol 14 (8) ◽  
pp. 845-852 ◽  
Author(s):  
P. F. Coley ◽  
P. R. Jonas

Abstract. The effects of cloud shadowing, channelling, cloud side illumination and droplet concentration are investigated with regard to the reflection of shortwave solar radiation. Using simple geometric clouds, coupled with a Monte Carlo model the transmission properties of idealized cloud layers are found. The clouds are illuminated with direct solar radiation from above. The main conclusion reached is that the distribution of the cloud has a very large influence on the reflectivity of a cloud layer. In particular, if the cloud contains vertical gaps through the cloud layer in which the liquid water content is zero, then, smaller more numerous gaps are more influential on the radiation than fewer, larger gaps with equal cloud fraction. At very low solar zenith angles channelling of the radiation reduces the reflection expected on the basis of the percentage cloud cover. At high solar zenith angles the illumination of the cloud edges significantly increases the reflection despite the shadowing of one cloud by another when the width of the gaps is small. The impact of droplet concentration upon the reflection of cloud layers is also investigated. It is found that at low solar zenith angles where channelling is important, the lower concentrations increase the transmission. Conversely, when cloud edge illumination is dominant the cloud distribution is found to be more important for the higher concentrations.


Author(s):  
Tsung-Yung Lee ◽  
Chun-Chieh Wu ◽  
Rosimar Rios-Berrios

AbstractThe impact of low-level flow (LLF) direction on the intensification of intense tropical cyclones under moderate deep-layer shear is investigated based on idealized numerical experiments. The background flow profiles are constructed by varying the LLF direction with the same moderate deep-layer shear. When the maximum surface wind speed of the simulation without background flow reaches 70 knots, the background flow profiles are imposed. After a weakening period in the first 12 h, the members with upshear-left-pointing LLF (fast-intensifying group) intensify faster between 12–24 h than those members (slow-intensifying group) with downshear-right-pointing LLF. The fast-intensifying group experiences earlier development of inner-core structures after 12 h, such as potential vorticity below the mid-troposphere, upper-level warm core, eyewall axisymmmetrization, and moist entropy gradient, while the inner-core features of the slow-intensifying group remain relatively weak and asymmetric. The FI group experiences smaller tilt increase and stronger mid-level PV ring development. The upshear-left convection during 6–12 h is responsible for the earlier development of the inner core by reducing ventilation, providing axisymmetric heating and benefiting the eyewall development. The LLF of the fast-intensifying group enhances surface heat fluxes in the downshear side, resulting in higher energy supply to the upshear-left convection from the boundary layer. In all, this study provides new insights on the impact of LLF direction on intense storms under moderate shear by modulating the surface heat fluxes and eyewall convection.


2020 ◽  
Author(s):  
Yajuan Song ◽  
Fangli Qiao ◽  
Qi Shu ◽  
Jiping Liu ◽  
Ying Bao ◽  
...  

<p>Accurate cloud cover and radiative effect simulation remains a long-standing challenge for global climate models (GCMs). The Southern Ocean (SO) cloud cover is substantially underestimated by most GCMs. Therefore, too much shortwave radiation is absorbed by oceans, which causes an overly warm sea surface temperature (SST) bias over the SO. For the first time, sea spray effects on latent and sensible heat fluxes are considered in a climate model. The most notable sea spray impacts on heat fluxes occur over the SO, with anomalous latent heat fluxes up to -7.74 W m<sup>-2</sup>. Enhanced latent heat release lead to SST cooling. In addition, more clouds are formed over the SO to reflect excessive downward shortwave radiation, especially low-level clouds at 1.51% increments. Our results provide a feasible solution to mitigate the lack of low-level clouds and overly warm SST biases over the SO in GCMs.</p>


2010 ◽  
Vol 138 (7) ◽  
pp. 2481-2498 ◽  
Author(s):  
Celeste Saulo ◽  
Lorena Ferreira ◽  
Julia Nogués-Paegle ◽  
Marcelo Seluchi ◽  
Juan Ruiz

Abstract The impact of changes in soil moisture in subtropical Argentina in rainfall distribution and low-level circulation is studied with a state-of-the-art regional model in a downscaling mode, with different scenarios of soil moisture for a 10-day period. The selected case (starting 29 January 2003) was characterized by a northwestern Argentina low event associated with well-defined low-level northerly flow that extended east of the Andes over subtropical latitudes. Four tests were conducted at 40-km horizontal resolution with 31 sigma levels, decreasing and increasing the soil moisture initial condition by 50% over the entire domain, and imposing a 50% reduction over northwest Argentina and 50% increase over southeast South America. A control run with NCEP/Global Data Assimilation System (GDAS) initial conditions was used to assess the impact of the different soil moisture configurations. It was found that land surface interactions are stronger when soil moisture is decreased, with a coherent reduction of precipitation over southern South America. Enhanced northerly winds result from an increase in the zonal gradient of pressure at low levels. In contrast, when soil moisture is increased, smaller circulation changes are found, although there appears to be a local feedback effect between the land and precipitation. The combined effects of changes in the circulation and in local stratification induced by soil wetness modifications, through variations in evaporation and Convective Available Potential Energy (CAPE), are in agreement with what has been found by other studies, resulting in coherent modifications of precipitation when variations of CAPE and moisture flux convergence mutually reinforce.


2012 ◽  
Vol 6 (2) ◽  
pp. 353-363 ◽  
Author(s):  
P. Kuipers Munneke ◽  
M. R. van den Broeke ◽  
J. C. King ◽  
T. Gray ◽  
C. H. Reijmer

Abstract. Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), which includes melt energy. The two AWSs are separated by about 70 km in the north–south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux) can be seen. The impact of subsurface absorption of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the decrease of net longwave and latent heat fluxes, providing energy for significant melt.


2002 ◽  
Vol 48 (161) ◽  
pp. 301-311 ◽  
Author(s):  
Bin Cheng

AbstractThe numerical integration of the heat-conduction equation is one of the main components in a thermodynamic sea-ice model. The spatial resolution in the ice normally varies from a minimum of three layers up to a few tens of layers. The temporal resolution varies from a few minutes up to hours. In this paper the impact of numerical resolution on the prediction of a one-dimensional thermodynamic ice model is studied. Analytical solutions for idealized cases were derived and compared with the numerical results. For the full ice model, groups of simulations were made, applying average climatic weather-forcing data corresponding to the ice-freezing, ice-thermal equilibrium and ice warm-up seasons. Special attention was paid to the effect of model spatial resolution. Early in the freezing season, the influence of resolution on model predictions is not significant. When the shortwave radiation becomes large, its absorption within the ice or snow cover was found to modulate the effect of numerical resolution on predictions of ice temperature and surface heat fluxes (e.g. the model run with a coarse spatial resolution yielded large daily variations in surface temperature). Resolution also affects the in-ice temperature profile. For process studies, a two-layer scheme for the solar radiation penetrating into the ice is suitable for a fine-spatial-resolution ice model.


Sign in / Sign up

Export Citation Format

Share Document