side illumination
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jian Yu ◽  
Jin Xu ◽  
Niel Sanico

Abstract The characterization of Back Side Illumination (BSI) Image Sensor is challenging because of its unique construct with silicon on top. A novel approach for the BSI Image sensor characterization will be presented in this paper. The proposed approach utilizes the circuit editing through the silicon (backside) by ion beam and optical imaging. This technique allows access to the buried conductors and creates probe points for measurements, which are typically performed by an optical prober, electron beam prober or a mechanical micro/nano prober.


2021 ◽  
Vol 88 (10) ◽  
pp. 597
Author(s):  
I. L. Vinogradova ◽  
A. I. Salikhov ◽  
I. K. Meshkov ◽  
A. R. Gizatulin ◽  
A. Kh. Sultanov ◽  
...  

2021 ◽  
pp. 4-15
Author(s):  
Alexander A. Tikhomirov

The review is devoted to the study of the internal radiation regime in the canopies cultivated under controlled environmental conditions. The expediency of using canopies as an object of research for evaluating the photobiological efficiency of radiation in light culture conditions is justified. The appropriateness of light measurements in multi-tiered canopies is shown, taking into account the role of leaves of different tiers in the formation of an economically useful crop. The main requirements for light devices for their use in measuring artificial radiation in light culture conditions are considered, and a brief analysis of the existing instrument base for performing these studies is given. A number of examples show the complexity and ambiguity of the internal structure of the light field that is forming within canopies in light culture conditions. Conceptual approaches to the choice of spectral and energy characteristics of artificial irradiation for plant light culture are proposed and justified. The necessity of taking into account the light conditions of leaves of different tiers when choosing the spectral and energy characteristics of light sources for the cultivation of multi-tiered canopies is justified. Techniques, methods, and light sources used for additional intracanopy lighting are analysed. The efficiency of using side illumination of plant canopies and conditions for its implementation are considered. The advantages of the volume distribution of canopies on the most common multi-tiered lighting installations are discussed. Based on the presented material, we consider ways to improve methodological approaches for evaluating the photobiological effectiveness of artificial radiation in light culture conditions for canopies of cultivated plants, taking into account the features of their architectonics and internal radiation regime.


Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 87
Author(s):  
Peihong Guan ◽  
Min Tang ◽  
Min Cao ◽  
Yuean Mi ◽  
Mei Liu ◽  
...  

The transverse asymmetry of the index modulation profile in the asymmetric few-mode fiber Bragg grating (FM-FBG) was investigated. The transverse asymmetry of the index modulation profile will lead to mode conversion between modes with the different azimuthal orders, and this asymmetry is characterized by the attenuation coefficient α. We evaluated that the value of attenuation coefficient α was 0.2 μm−1, and grating amplitude χ was 2.8 × 10−4 for FM-FBG inscribed by UV single-side illumination. We found that the optimized value of α was 0.16 μm−1, at which the maximum mode conversion efficiency of LP01–LP11 can be achieved. The results of this paper provide great potential application in few-mode fiber (FMF) devices and mode division multiplexing (MDM) optical communication.


2021 ◽  
Vol 64 (2) ◽  
pp. 74-79
Author(s):  
Kazuaki OISHI ◽  
Hiroyuki ISHII ◽  
Wen-Hsin CHANG ◽  
Tetsuji SHIMIZU ◽  
Hiroto ISHII ◽  
...  

Author(s):  
Jian Yu ◽  
Jin Xu ◽  
Niel Sanico

Abstract The characterization of Back Side Illumination (BSI) Image Sensor is challenging because of its unique construct with silicon on top. A novel approach for the BSI Image sensor characterization will be presented in this paper. The proposed approach utilizes the circuit editing through the silicon (backside) by ion beam and optical imaging. This technique allows access to the buried conductors and creates probe points for measurements, which are typically performed by an optical prober, electron beam prober or a mechanical micro/nano prober.


2020 ◽  
pp. 2000439
Author(s):  
Kazuaki Oishi ◽  
Hiroyuki Ishii ◽  
Wen Hsin Chang ◽  
Hiroto Ishii ◽  
Akira Endoh ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5138
Author(s):  
Jimin Lee ◽  
Sang-Hwan Kim ◽  
Hyeunwoo Kwen ◽  
Juneyoung Jang ◽  
Seunghyuk Chang ◽  
...  

This paper presents a CMOS depth image sensor with offset pixel aperture (OPA) using a back-side illumination structure to improve disparity. The OPA method is an efficient way to obtain depth information with a single image sensor without additional external factors. Two types of apertures (i.e., left-OPA (LOPA) and right-OPA (ROPA)) are applied to pixels. The depth information is obtained from the disparity caused by the phase difference between the LOPA and ROPA images. In a CMOS depth image sensor with OPA, disparity is important information. Improving disparity is an easy way of improving the performance of the CMOS depth image sensor with OPA. Disparity is affected by pixel height. Therefore, this paper compared two CMOS depth image sensors with OPA using front-side illumination (FSI) and back-side illumination (BSI) structures. As FSI and BSI chips are fabricated via different processes, two similar chips were used for measurement by calculating the ratio of the OPA offset to pixel size. Both chips were evaluated for chief ray angle (CRA) and disparity in the same measurement environment. Experimental results were then compared and analyzed for the two CMOS depth image sensors with OPA.


2020 ◽  
Author(s):  
Fabian Jakub ◽  
Bernhard Mayer

<pre class="moz-quote-pre">Recent studies have shown that the effects of three dimensional radiative transfer may impact cloud formation and precipitation. While one-dimensional solvers are favoured due to their computational simplicity, they do however neglect any horizontal energy transport. In particular, the 1D approximation neglects 3D effects such as cloud side illumination and the displacement of the cloud's shadow at the surface which are relevant whenever the sun is not in the zenith. This has a detrimental effect on the results of high resolution simulations. 3D radiative transfer has the potential to considerably change the boundary layer dynamics, the evolution of clouds, their lifetime and precipitation onset. To this date, studies that investigate the influence of 3D effects on realistic NWP settings are rare, primarily because there haven't been 3D radiative transfer solvers around that were fast enough to be run interactively in a forecast simulation. For that purpose we adapted the TenStream solver (parallel 3D radiative transfer solver for LES) to unstructured meshes and coupled it to ICON-LEM. We will present the new solver in the context of ICON-LEM simulations, the methodologies used and its characteristics.</pre>


Sign in / Sign up

Export Citation Format

Share Document