scholarly journals Climate and land use effects on forest cover in the Bernese Alps during the 20th century

2012 ◽  
Vol 67 (1/2) ◽  
pp. 15-25 ◽  
Author(s):  
T. Providoli ◽  
N. J. Kuhn

2019 ◽  
Author(s):  
Carla Gómez-Creutzberg ◽  
Malgorzata Lagisz ◽  
Shinichi Nakagawa ◽  
Eckehard G. Brockerhoff ◽  
Jason M. Tylianakis

ABSTRACTSustaining multiple ecosystem services across a landscape requires an understanding of how consistently services are shaped by different categories of land uses. Yet, this understanding is generally constrained by the availability of fine-resolution data for multiple services across large areas and the spatial variability of land-use effects on services. We systematically surveyed published literature for New Zealand (1970 – 2015) to quantify the supply of 17 services across 25 land covers (as a proxy for land use). We found a consistent trade-off in the services supplied by anthropogenic land covers with a high production intensity (e.g., cropping) versus those with extensive or no production. In contrast, forest cover was not associated with any distinct patterns of service supply. By drawing on existing research findings we reveal complementarity and redundancy (potentially influencing resilience) in service supply from different land covers. This can guide practitioners in shaping land systems that sustainably support human well-being.


Ecosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. e02594 ◽  
Author(s):  
Kyle C. Rodman ◽  
Thomas T. Veblen ◽  
Sara Saraceni ◽  
Teresa B. Chapman

Author(s):  
Louis J. Pignataro ◽  
Joseph Wen ◽  
Robert Burchell ◽  
Michael L. Lahr ◽  
Ann Strauss-Wieder

The purpose of the Transportation Economic and Land Use System (TELUS) is to convert the transportation improvement program (TIP) into a management tool. Accordingly, the system provides detailed and easily accessible information on transportation projects in the region, as well as their interrelationships and impacts. By doing so, TELUS enables public-sector agencies to meet organizational, Intermodal Surface Transportation Efficiency Act, state, and other mandates more effectively. The objectives are accomplished by providing the computer-based capability to analyze, sort, combine, and track transportation projects in or under consideration for a TIP; assessing the interrelationships among significant transportation projects; estimating the regional economic and land use effects of transportation projects; and presenting project information in an easily understood format, including geographic information system formats.


2019 ◽  
Vol 5 (1) ◽  
pp. 108-117
Author(s):  
Solomon Jeremiah Sembosi

Rural settlements in mountainous regions are a typical process that occurs in many places around the world and have a number of implications on the landscape. Among them is a threat it possesses to the conservation and management of Afromontane ecosystems. This study assessed the socio-economic factors that drive the changes in land use and forest cover and the extent of land use and vegetation cover in and around Magamba Nature Reserve. Focus group discussion, direct field observation and household survey were used to acquire socio-economic information that impacts land use and forest cover. Through the use of Remote Sensing and GIS methods Landsat satellite images of 1995, 2008 and 2015 were employed to identify the extent of the changes in land use and forest cover. The perceived factors for the changes include education level, unemployment, landless/limited, landholding, population pressure, expansion of built-up areas and agricultural land at the expense of other land covers. This study revealed the transformation of natural forest and associated vegetation from one form to another. There was a decrease in natural vegetation from 61.06% in 1995 to 26.02% in 2015 and increase in built-up areas by 6.69% and agricultural areas by 4.70%. This study recommends conservation monitoring and strong law enforcement relating to natural resources so as to promote sustainable use of resources to rescue the diminishing ecosystem services.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Aman Srivastava ◽  
Pennan Chinnasamy

AbstractThe present study, for the first time, examined land-use land cover (LULC), changes using GIS, between 2000 and 2018 for the IIT Bombay campus, India. Objective was to evaluate hydro-ecological balance inside campus by determining spatio-temporal disparity between hydrological parameters (rainfall-runoff processes), ecological components (forest, vegetation, lake, barren land), and anthropogenic stressors (urbanization and encroachments). High-resolution satellite imageries were generated for the campus using Google Earth Pro, by manual supervised classification method. Rainfall patterns were studied using secondary data sources, and surface runoff was estimated using SCS-CN method. Additionally, reconnaissance surveys, ground-truthing, and qualitative investigations were conducted to validate LULC changes and hydro-ecological stability. LULC of 2018 showed forest, having an area cover of 52%, as the most dominating land use followed by built-up (43%). Results indicated that the area under built-up increased by 40% and playground by 7%. Despite rapid construction activities, forest cover and Powai lake remained unaffected. This anomaly was attributed to the drastically declining barren land area (up to ~ 98%) encompassing additional construction activities. Sustainability of the campus was demonstrated with appropriate measures undertaken to mitigate negative consequences of unwarranted floods owing to the rise of 6% in the forest cover and a decline of 21% in water hyacinth cover over Powai lake. Due to this, surface runoff (~ 61% of the rainfall) was observed approximately consistent and being managed appropriately despite major alterations in the LULC. Study concluded that systematic campus design with effective implementation of green initiatives can maintain a hydro-ecological balance without distressing the environmental services.


2021 ◽  
Author(s):  
Jennifer L. Williamson ◽  
Andrew Tye ◽  
Dan J. Lapworth ◽  
Don Monteith ◽  
Richard Sanders ◽  
...  

AbstractThe dissolved organic carbon (DOC) export from land to ocean via rivers is a significant term in the global C cycle, and has been modified in many areas by human activity. DOC exports from large global rivers are fairly well quantified, but those from smaller river systems, including those draining oceanic regions, are generally under-represented in global syntheses. Given that these regions typically have high runoff and high peat cover, they may exert a disproportionate influence on the global land–ocean DOC export. Here we describe a comprehensive new assessment of the annual riverine DOC export to estuaries across the island of Great Britain (GB), which spans the latitude range 50–60° N with strong spatial gradients of topography, soils, rainfall, land use and population density. DOC yields (export per unit area) were positively related to and best predicted by rainfall, peat extent and forest cover, but relatively insensitive to population density or agricultural development. Based on an empirical relationship with land use and rainfall we estimate that the DOC export from the GB land area to the freshwater-seawater interface was 1.15 Tg C year−1 in 2017. The average yield for GB rivers is 5.04 g C m−2 year−1, higher than most of the world’s major rivers, including those of the humid tropics and Arctic, supporting the conclusion that under-representation of smaller river systems draining peat-rich areas could lead to under-estimation of the global land–ocean DOC export. The main anthropogenic factor influencing the spatial distribution of GB DOC exports appears to be upland conifer plantation forestry, which is estimated to have raised the overall DOC export by 0.168 Tg C year−1. This is equivalent to 15% of the estimated current rate of net CO2 uptake by British forests. With the UK and many other countries seeking to expand plantation forest cover for climate change mitigation, this ‘leak in the ecosystem’ should be incorporated in future assessments of the CO2 sequestration potential of forest planting strategies.


Sign in / Sign up

Export Citation Format

Share Document