scholarly journals Convective response to large-scale forcing in the tropical western Pacific simulated by spCAM5 and CanAM4.3

2019 ◽  
Vol 12 (5) ◽  
pp. 2107-2117 ◽  
Author(s):  
Toni Mitovski ◽  
Jason N. S. Cole ◽  
Norman A. McFarlane ◽  
Knut von Salzen ◽  
Guang J. Zhang

Abstract. Changes in the large-scale environment during convective precipitation events in the tropical western Pacific simulated by version 4.3 of the Canadian Atmospheric Model (CanAM4.3) are compared against those simulated by version 5.0 of the super-parameterized Community Atmosphere Model (spCAM5). This is done by compositing sub-hourly output of convective rainfall, convective available potential energy (CAPE), CAPE generation due to large-scale forcing in the free troposphere (dCAPELSFT) and near-surface vertical velocity (ω) over the time period May–July 1997. Compared to spCAM5, CanAM4.3 tends to produce more frequent light convective precipitation (<0.2 mm h−1) and underestimates the frequency of extreme convective precipitation (>2 mm h−1). In spCAM5, 5 % of convective precipitation events lasted less than 1.5 h and 75 % lasted between 1.5 and 3.0 h, while in CanAM4.3 80 % of the events lasted less than 1.5 h. Convective precipitation in spCAM5 is found to be a function of dCAPELSFT and the large-scale near-surface ω with variations in ω slightly leading variations in convective precipitation. Convective precipitation in CanAM4.3 does not have the same dependency and instead is found to be a function of CAPE.

2018 ◽  
Author(s):  
Toni Mitovski ◽  
Jason N. S. Cole ◽  
Norman A. McFarlane ◽  
Knut von Salzen ◽  
Guang J. Zhang

Abstract. Changes in the large-scale environment during convective precipitation events in the Tropical Western Pacific simulated by version 4.3 of the Canadian Atmospheric Model (CanAM4.3) is compared against those simulated by version 5.0 of the super parameterized Community Atmosphere Model (spCAM5). This is done by compositing sub-hourly output of convective rainfall, convective available potential energy (CAPE), CAPE generation due to large-scale forcing in the free troposphere (dCAPELSFT), and near surface vertical velocity (ω) over the time period May–July 1997. Compared to spCAM5, CanAM4.3 tends to produce more frequent light convective precipitation ( 2 mm h−1). In spCAM5 5 % of convective precipitation events lasted less than 1.5 h and 75 % lasted between 1.5 and 3.0 h while in CanAM4.3 80 % of the events lasted less than 1.5 h. Convective precipitation in spCAM5 is found to be a function of dCAPELSFT and the large-scale near surface ω with variations in ω slightly leading variations in convective precipitation. Convective precipitation in CanAM4.3 does not have the same dependency and instead is found to be a function of CAPE.


2017 ◽  
Vol 30 (15) ◽  
pp. 6037-6052 ◽  
Author(s):  
G. Lenderink ◽  
R. Barbero ◽  
J. M. Loriaux ◽  
H. J. Fowler

Present-day precipitation–temperature scaling relations indicate that hourly precipitation extremes may have a response to warming exceeding the Clausius–Clapeyron (CC) relation; for the Netherlands the dependency on surface dewpoint temperature follows 2 times the CC relation (2CC). The authors’ hypothesis—as supported by a simple physical argument presented here—is that this 2CC behavior arises from the physics of convective clouds. To further investigate this, the large-scale atmospheric conditions accompanying summertime afternoon precipitation events are analyzed using surface observations combined with a regional reanalysis. Events are precipitation measurements clustered in time and space. The hourly peak intensities of these events again reveal a 2CC scaling with the surface dewpoint temperature. The temperature excess of moist updrafts initialized at the surface and the maximum cloud depth are clear functions of surface dewpoint, confirming the key role of surface humidity on convective activity. Almost no differences in relative humidity and the dry temperature lapse rate were found across the dewpoint temperature range, supporting the theory that 2CC scaling is mainly due to the response of convection to increases in near-surface humidity, while other atmospheric conditions remain similar. Additionally, hourly precipitation extremes are on average accompanied by substantial large-scale upward motions and therefore large-scale moisture convergence, which appears to accelerate with surface dewpoint. Consequently, most hourly extremes occur in precipitation events with considerable spatial extent. Importantly, this event size appears to increase rapidly at the highest dewpoint temperature range, suggesting potentially strong impacts of climatic warming.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mateusz Taszarek ◽  
John T. Allen ◽  
Mattia Marchio ◽  
Harold E. Brooks

AbstractGlobally, thunderstorms are responsible for a significant fraction of rainfall, and in the mid-latitudes often produce extreme weather, including large hail, tornadoes and damaging winds. Despite this importance, how the global frequency of thunderstorms and their accompanying hazards has changed over the past 4 decades remains unclear. Large-scale diagnostics applied to global climate models have suggested that the frequency of thunderstorms and their intensity is likely to increase in the future. Here, we show that according to ERA5 convective available potential energy (CAPE) and convective precipitation (CP) have decreased over the tropics and subtropics with simultaneous increases in 0–6 km wind shear (BS06). Conversely, rawinsonde observations paint a different picture across the mid-latitudes with increasing CAPE and significant decreases to BS06. Differing trends and disagreement between ERA5 and rawinsondes observed over some regions suggest that results should be interpreted with caution, especially for CAPE and CP across tropics where uncertainty is the highest and reliable long-term rawinsonde observations are missing.


2021 ◽  
Author(s):  
Carol Tamez Melendez ◽  
Judith Meyer ◽  
Audrey Douinot ◽  
Günter Blöschl ◽  
Laurent Pfister

&lt;p&gt;Flash flood events have caused massive damage on multiple occasions between 2016 and 2018 in several catchments in eastern Luxembourg. This region is very well known for being exposed to large-scale winter floods, commonly triggered by long-lasting advective precipitation events related to westerly atmospheric fluxes. However, flash floods - a truly exceptional phenomenon in this region - are have solely occurred in summer in response to intense convective precipitation events. Thus, because of the rare occurrence and local character of this type of events, the mechanisms eventually controlling a flash flood-type response of a catchment remains poorly understood. &amp;#160;&lt;/p&gt;&lt;p&gt;Here, we focus on four main objectives: i) the role that physiographic characteristics play on the spatial variability of pre-event hydrological states (as expressed via storage) across a set of 41 nested catchments located in the S&amp;#251;re River basin (4,240 km&lt;sup&gt;2&lt;/sup&gt;), Luxembourg, ii) the hydrological response to precipitation controlled by those pre-event hydrological states, iii) the responsivity (resistance) and elasticity (resilience) of the catchments to global change, and iv) the relation between water yields and the offsets from Budyko curve and its related energy limits.&lt;/p&gt;&lt;p&gt;The area of interest is not only characterised by a homogenous temperate oceanic climate but also by heterogeneous physiographical conditions and land use, which makes it ideal for this study. We used 8 years&amp;#8217; worth hydrological data (precipitation, discharge and potential evapotranspiration) to calculate the increments of the water balance and determine the maximum storage capacity and storage deficits. Second, we used the relationship between storage deficit and discharge to estimate total storage at a hypothetical nearly zero flow condition. Third, we compared the pre-hydrological states and event runoff ratios (Q/P) to the catchments&amp;#8217; physiographical conditions in order to link catchment&amp;#8217;s sensitivity to storage metrics. We then assessed the responsivity and elasticity to climate and anthropogenic variations &amp;#8211; as expressed through the PET/P and AET/P deviations from the Budyko curve and energy limits&amp;#8211; for each individual catchment. Finally, we investigated the catchment&amp;#8217;s area control on responsivity, elasticity, water yields and Budyko&amp;#8217;s elements across our set of 41 nested catchments.&lt;/p&gt;


2016 ◽  
Vol 17 (5) ◽  
pp. 1425-1445 ◽  
Author(s):  
Toshi Matsui ◽  
Jiun-Dar Chern ◽  
Wei-Kuo Tao ◽  
Stephen Lang ◽  
Masaki Satoh ◽  
...  

Abstract A 14-yr climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multisensor signal statistics reveals a distinct land–ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM Precipitation Radar and Microwave Imager show a large land–ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of more/larger frozen convective hydrometeors. This strong land–ocean contrast in deep convection is invariant over seasonal and multiyear time scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land–ocean statistics using the TRMM Triple-Sensor Three-Step Evaluation Framework via a satellite simulator. The models evaluated are the NASA Multiscale Modeling Framework (MMF) and the Nonhydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land–ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moister in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land–ocean contrast in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.


2013 ◽  
Vol 26 (10) ◽  
pp. 3209-3230 ◽  
Author(s):  
Anthony M. DeAngelis ◽  
Anthony J. Broccoli ◽  
Steven G. Decker

Abstract Climate model simulations of daily precipitation statistics from the third phase of the Coupled Model Intercomparison Project (CMIP3) were evaluated against precipitation observations from North America over the period 1979–99. The evaluation revealed that the models underestimate the intensity of heavy and extreme precipitation along the Pacific coast, southeastern United States, and southern Mexico, and these biases are robust among the models. The models also overestimate the intensity of light precipitation events over much of North America, resulting in fairly realistic mean precipitation in many places. In contrast, heavy precipitation is simulated realistically over northern and eastern Canada, as is the seasonal cycle of heavy precipitation over a majority of North America. An evaluation of the simulated atmospheric dynamics and thermodynamics associated with extreme precipitation events was also conducted using the North American Regional Reanalysis (NARR). The models were found to capture the large-scale physical mechanisms that generate extreme precipitation realistically, although they tend to overestimate the strength of the associated atmospheric circulation features. This suggests that climate model deficiencies such as insufficient spatial resolution, inadequate representation of convective precipitation, and overly smoothed topography may be more important for biases in simulated heavy precipitation than errors in the large-scale circulation during extreme events.


2020 ◽  
Author(s):  
Daniel Argüeso ◽  
Alejandro Di Luca ◽  
Nicolas Jourdain ◽  
Romualdo Romero ◽  
Victor Homar

&lt;p&gt;The Maritime Continent is a major convective area and precipitation processes in the region pose great challenges to atmospheric models. A combination of large-scale drivers, such as the Madden-Julian Oscillation and ENSO, and fine-scale processes, such as orographically-forced precipitation, land-sea circulations and tropical convection, governs rainfall in the Maritime Continent. The use of convection-permitting models in the region has shown improved performance in the simulation of precipitation characteristics that are key for the region (i.e. diurnal cycle).&lt;/p&gt;&lt;p&gt;Most of the rainfall occurring over land is concentrated in the late afternoon and precipitation extremes often occur over short periods of time. The availability of water vapor in the lower troposphere and the high water-holding capacity of a warm atmosphere favors very intense precipitation events, according to the Clausius-Clapeyron relationship. In a warming climate, a full understanding of the so-called precipitation scaling with temperature is thus crucial. However, this potential generally requires the atmosphere be saturated and convection be initiated to become effective. Using a regional climate model operating at convection-permitting scales over 3 consecutive wet seasons, we investigate the response of intense precipitation to temperature.&lt;/p&gt;&lt;p&gt;In this presentation, we examine different approaches to relate precipitation extremes to near-surface temperature and dew-point temperature. We show that the relationship breaks at certain thresholds that are relatively uniform across islands. The region is well supplied with water vapor and the break is not explained by a deficit in water vapor, unlike previously proposed for other water-limited regions. We identify possible reasons for this behavior, such as the lack of environmental conditions that trigger convection. In this context, we explore the sensitivity of the modelling system to the convection representation (explicit vs. parameterized) and discuss the implications for future changes in intense precipitation events. Finally, we put forward the use of specific variables, such as temperature and equivalent potential temperature integrated in the vertical. These variables not only are coherent with the CC equation but also acknowledge the different warming rates near the surface and at higher tropospheric levels, where precipitating processes actually occur.&lt;/p&gt;


2015 ◽  
Vol 28 (7) ◽  
pp. 2777-2803 ◽  
Author(s):  
Colin M. Zarzycki ◽  
Christiane Jablonowski ◽  
Diana R. Thatcher ◽  
Mark A. Taylor

Abstract Using the spectral element (SE) dynamical core within the National Center for Atmospheric Research–Department of Energy Community Atmosphere Model (CAM), a regionally refined nest at 0.25° (~28 km) horizontal resolution located over the North Atlantic is embedded within a global 1° (~111 km) grid. A 23-yr simulation using Atmospheric Model Intercomparison Project (AMIP) protocols and default CAM, version 5, physics is compared to an identically forced run using the global 1° (~111 km) grid without refinement. The addition of a refined patch over the Atlantic basin does not noticeably affect the global circulation. In the area where the refinement is located, large-scale precipitation increases with the higher resolution. This increase is partly offset by a decrease in precipitation resulting from convective parameterizations, although total precipitation is also slightly higher at finer resolutions. Equatorial waves are not significantly impacted when traversing multiple grid spacings. Despite the grid transition region bisecting northern Africa, local zonal jets and African easterly wave activity are highly similar in both simulations. The frequency of extreme precipitation events increases with resolution, although this increase is restricted to the refined patch. Topography is better resolved in the nest as a result of finer grid spacing. The spatial patterns of variables with strong orographic forcing (such as precipitation, cloud, and precipitable water) are improved with local refinement. Additionally, dynamical features, such as wind patterns, associated with steep terrain are improved in the variable-resolution simulation when compared to the uniform coarser run.


2010 ◽  
Vol 138 (12) ◽  
pp. 4416-4438 ◽  
Author(s):  
Russ S. Schumacher ◽  
David M. Schultz ◽  
John A. Knox

Abstract Convective snowbands moved slowly over Wyoming and northern Colorado on 16–17 February 2007 and produced up to 71 mm (2.8 in.) of snow that was unpredicted by operational numerical weather prediction models and human forecasters. The northwest–southeast-oriented bands lasted for over 6 h, comprising both a single major band (more than 30 km wide) and multiple minor bands (about 10 km wide). The convective bands initiated within the ascending branch of a secondary circulation associated with both near-surface and elevated frontogenesis, but the bands remained nearly stationary while the near-surface frontogenesis moved quickly equatorward. The bands occurred downstream of complex terrain on the anticyclonic-shear side of a midlevel jet streak, where conditional, dry symmetric (negative potential vorticity), and inertial (negative absolute vorticity) instabilities were present. To determine the mechanisms responsible for the development and organization of these bands, simulations using a convection-permitting numerical model are conducted. In contrast to the operational models, these simulations are able to produce convective bands in the same area and at about the same time as that observed. The simulated bands occurred in an environment with a nearly well-mixed, baroclinic boundary layer, positive convective available potential energy, and widespread negative potential vorticity. Individual bands initiated on the low-momentum side of vorticity banners downstream of mountains, and in association with frontogenetical ascent along two baroclinic zones. In addition, ascent caused by both frontogenesis and banded moist convection produced additional narrow regions of negative vorticity by transporting low-momentum air upward and creating strong horizontal gradients in wind speed. This event is similar to other observed instances of banded convection in the western United States on the anticyclonic-shear side of strong mid- and upper-tropospheric jets in environments lacking large-scale saturation. In contrast, these events differ from previously published banded precipitation events in the comma head of extratropical cyclones and downstream of mountains where large-scale saturation is present.


2020 ◽  
Vol 12 (4) ◽  
pp. 3097-3112
Author(s):  
Emily Collier ◽  
Thomas Mölg

Abstract. Climate impact assessments require information about climate change at regional and ideally also local scales. In dendroecological studies, this information has traditionally been obtained using statistical methods, which preclude the linkage of local climate changes to large-scale drivers in a process-based way. As part of recent efforts to investigate the impact of climate change on forest ecosystems in Bavaria, Germany, we developed a high-resolution atmospheric modelling dataset, BAYWRF, for this region over the thirty-year period of September 1987 to August 2018. The atmospheric model employed in this study, the Weather Research and Forecasting (WRF) model, was configured with two nested domains of 7.5 and 1.5 km grid spacing centred over Bavaria and forced at the outer lateral boundaries by ERA5 reanalysis data. Using an extensive network of observational data, we evaluate (i) the impact of using grid analysis nudging for a single-year simulation of the period of September 2017 to August 2018 and (ii) the full BAYWRF dataset generated using nudging. The evaluation shows that the model represents variability in near-surface meteorological conditions generally well, although there are both seasonal and spatial biases in the dataset that interested users should take into account. BAYWRF provides a unique and valuable tool for investigating climate change in Bavaria with high interdisciplinary relevance. Data from the finest-resolution WRF domain are available for download at daily temporal resolution from a public repository at the Open Science Framework (Collier, 2020; https://doi.org/10.17605/OSF.IO/AQ58B).


Sign in / Sign up

Export Citation Format

Share Document