scholarly journals Recent changes in terrestrial water storage in the Upper Nile Basin: an evaluation of commonly used gridded GRACE products

2017 ◽  
Vol 21 (9) ◽  
pp. 4533-4549 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS), providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of TWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of three GRACE ΔTWS signals from five commonly used gridded products (i.e. NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil moisture from the Global Land Data Assimilation System (GLDAS) in two sub-basins (LVB: Lake Victoria Basin; LKB: Lake Kyoga Basin) of the Upper Nile Basin. The analysis extends from January 2003 to December 2012, but focuses on a large and accurately observed reduction in ΔTWS of 83 km3 from 2003 to 2006 in the Lake Victoria Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 80 km3 (JPL-Mascons) to 69 and 31 km3 for GRGS and GRCTellus respectively. Representation of the phase in TWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons, and GRCTellus (ensemble mean of CSR, JPL, and GFZ time-series data), explaining 90, 84, and 75 % of the variance respectively in "in situ" or "bottom-up" ΔTWS in the LVB. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in changes in soil-moisture storage (ΔSMS) modelled by GLDAS LSMs (CLM, NOAH, VIC) and the low annual amplitudes in ΔGWS (e.g. 1.8–4.9 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products; this uncertainty is disregarded in analyses of ΔTWS and individual stores applying a single GRACE product.

2017 ◽  
Author(s):  
Mohammad Shamsudduha ◽  
Richard G. Taylor ◽  
Darren Jones ◽  
Laurent Longuevergne ◽  
Michael Owor ◽  
...  

Abstract. GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS) providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of ΔTWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of GRACE ΔTWS signals from 5 commonly-used gridded products (i.e., NASA's GRCTellus: CSR, JPL GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil-moisture from the Global Land Data Assimilation System (GLDAS). The focus of this analysis is a large and accurately observed reduction in ΔTWS of 75 km3 from 2004 to 2006 in Lake Victoria in the Upper Nile Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 68 km3 (GRGS) to 50 km3 and 26 km3 for JPL-Mascons and GRCTellus, respectively. Representation of the phase in ΔTWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons and GRCTellus (ensemble mean of CSR, JPL and GFZ time-series data) explaining 91 %, 85 %, and 77 % of the variance, respectively, in in-situ ΔTWS. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in modelled changes in soil-moisture storage (ΔSMS) and the low annual amplitudes in ΔGWS (e.g., 3.5 to 4.4 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products.


2006 ◽  
Vol 7 (1) ◽  
pp. 39-60 ◽  
Author(s):  
Martin Hirschi ◽  
Sonia I. Seneviratne ◽  
Christoph Schär

Abstract This paper presents a new diagnostic dataset of monthly variations in terrestrial water storage for 37 midlatitude river basins in Europe, Asia, North America, and Australia. Terrestrial water storage is the sum of all forms of water storage on land surfaces, and its seasonal and interannual variations are in principle determined by soil moisture, groundwater, snow cover, and surface water. The dataset is derived with the combined atmospheric and terrestrial water-balance approach using conventional streamflow measurements and atmospheric moisture convergence data from the ECMWF 40-yr Re-Analysis (ERA-40). A recent study for the Mississippi River basin (Seneviratne et al. 2004) has demonstrated the validity of this diagnostic approach and found that it agreed well with in situ observations in Illinois. The present study extends this previous analysis to other regions of the midlatitudes. A systematic analysis is presented of the slow drift that occurs with the water-balance approach. It is shown that the drift not only depends on the size of the catchment under consideration, but also on the geographical region and the underlying topography. The drift is in general not constant in time, but artificial inhomogeneities may result from changes in the global observing system used in the 44 yr of the reanalysis. To remove this time-dependent drift, a simple high-pass filter is applied. Validation of the results is conducted for several catchments with an appreciable coverage of in situ soil moisture and snow cover depth observations in the former Soviet Union, Mongolia, and China. Although the groundwater component is not accounted for in these observations, encouraging correlations are found between diagnostic and in situ estimates of terrestrial water storage, both for seasonal and interannual variations. Comparisons conducted against simulated ERA-40 terrestrial water storage variations suggest that the reanalysis substantially underestimates the amplitude of the seasonal cycle. The basin-scale water-balance (BSWB) dataset is available for download over the Internet. It constitutes a useful tool for the validation of climate models, large-scale land surface data assimilation systems, and indirect observations of terrestrial water storage variations.


2010 ◽  
Vol 7 (4) ◽  
pp. 4501-4533 ◽  
Author(s):  
H. C. Bonsor ◽  
M. M. Mansour ◽  
A. M. MacDonald ◽  
A. G. Hughes ◽  
R. G. Hipkin ◽  
...  

Abstract. Assessing and quantifying natural water storage is becoming increasingly important as nations develop strategies for economic growth and adaptations measures for climate change. The Gravity Recovery and Climate Experiment (GRACE) data provide a new opportunity to gain a direct and independent measure of water mass variations on a regional scale. Hydrological models are required to interpret these mass variations and partition them between different parts of the hydrological cycle, but groundwater storage has generally been poorly constrained by such models. This study focused on the Nile basin, and used a groundwater recharge model ZOODRM (Zoomable Object Oriented Distributed Recharge Model) to help interpret the seasonal variation in terrestrial water storage indicated by GRACE. The recharge model was constructed using almost entirely remotely sensed input data and calibrated to observed hydrological data from the Nile. GRACE data for the Nile Basin indicates an annual terrestrial water storage of approximately 200 km3: water input is from rainfall, and much of this water is evaporated within the basin since average annual outflow of the Nile is less than 30 km3. Total annual recharge simulated by ZOODRM is 400 km3/yr; 0–50 mm/yr within the semi arid lower catchments, and a mean of 250 mm/yr in the sub-tropical upper catchments. These results are comparable to the few site specific studies of recharge in the basin. Accounting for year-round discharge of groundwater, the seasonal groundwater storage is 100–150 km3/yr and seasonal change in soil moisture, 30 km3/yr. Together, they account for between 50 and 90% of the annual water storage in the catchment. The annual water mass variation (200 km3/yr) is an order of magnitude smaller than the rainfall input into the catchment (2000 km3/yr), which could be consistent with a high degree of moisture recycling within the basin. Future work is required to advance the calibration of the ZOODRM model, particularly improving the timing of runoff routing.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Dostdar Hussain ◽  
Aftab Ahmed Khan ◽  
Syed Najam Ul Hassan ◽  
Syed Ali Asad Naqvi ◽  
Akhtar Jamil

AbstractMountains regions like Gilgit-Baltistan (GB) province of Pakistan are solely dependent on seasonal snow and glacier melt. In Indus basin which forms in GB, there is a need to manage water in a sustainable way for the livelihood and economic activities of the downstream population. It is important to monitor water resources that include glaciers, snow-covered area, lakes, etc., besides traditional hydrological (point-based measurements by using the gauging station) and remote sensing-based studies (traditional satellite-based observations provide terrestrial water storage (TWS) change within few centimeters from the earth’s surface); the TWS anomalies (TWSA) for the GB region are not investigated. In this study, the TWSA in GB region is considered for the period of 13 years (from January 2003 to December 2016). Gravity Recovery and Climate Experiment (GRACE) level 2 monthly data from three processing centers, namely Centre for Space Research (CSR), German Research Center for Geosciences (GFZ), and Jet Propulsion Laboratory (JPL), System Global Land Data Assimilation System (GLDAS)-driven Noah model, and in situ precipitation data from weather stations, were used for the study investigation. GRACE can help to forecast the possible trends of increasing or decreasing TWS with high accuracy as compared to the past studies, which do not use satellite gravity data. Our results indicate that TWS shows a decreasing trend estimated by GRACE (CSR, GFZ, and JPL) and GLDAS-Noah model, but the trend is not significant statistically. The annual amplitude of GLDAS-Noah is greater than GRACE signal. Mean monthly analysis of TWSA indicates that TWS reaches its maximum in April, while it reaches its minimum in October. Furthermore, Spearman’s rank correlation is determined between GRACE estimated TWS with precipitation, soil moisture (SM) and snow water equivalent (SWE). We also assess the factors, SM and SWE which are the most efficient parameters producing GRACE TWS signal in the study area. In future, our results with the support of more in situ data can be helpful for conservation of natural resources and to manage flood hazards, droughts, and water distribution for the mountain regions.


Author(s):  
Emad Hasan ◽  
Aondover Tarhule

GRACE-derived Terrestrial Water Storage Anomalies (TWSA) continue to be used in an expanding array of studies to analyze numerous processes and phenomena related to terrestrial water storage dynamics, including groundwater depletions, lake storage variations, snow, and glacial mass changes, as well as floods, droughts, among others. So far, however, few studies have investigated how the factors that affect total water storage (e.g., precipitation, runoff, soil moisture, evapotranspiration) interact and combine over space and time to produce the mass variations that GRACE detects. This paper is an attempt to fill that gap and stimulate needed research in this area. Using the Nile River Basin as case study, it explicitly analyzes nine hydroclimatic and anthropogenic processes, as well as their relationship to TWS in different climatic zones in the Nile River Basin. The analytic method employed the trends in both the dependent and independent variables applying two geographically multiple regression (GMR) approaches: (i) an unweighted or ordinary least square regression (OLS) model in which the contributions of all variables to TWS variability are deemed equal at all locations; and (ii) a geographically weighted regression (GWR) which assigns a weight to each variable at different locations based on the occurrence of trend clusters, determined by Moran’s cluster index. In both cases, model efficacy was investigated using standard goodness of fit diagnostics. The OLS showed that trends in five variables (i.e., precipitation, runoff, surface water soil moisture, and population density) significantly (p<0.0001) explain the trends in TWSA for the basin at large. However, the models R2 value is only 0.14. In contrast, the GWR produced R2 values ranging between 0.40 and 0.89, with an average of 0.86 and normally distributed standard residuals. The models retained in the GWR differ by climatic zone. The results showed that all nine variables contribute significantly to the trend in TWS in the Tropical region; population density is an important contributor to TWSA variability in all zones; ET and Population density are the only significant variables in the semiarid zone. This type of information is critical for developing robust statistical models for reconstructing time series of proxy GRACE anomalies that predate the launch of the GRACE mission and for gap-filling between GRACE and GRACE-FO.


2021 ◽  
Author(s):  
Tina Trautmann ◽  
Sujan Koirala ◽  
Nuno Carvalhais ◽  
Andreas Güntner ◽  
Martin Jung

Abstract. So far, various studies aimed at decomposing the integrated terrestrial water storage variations observed by satellite gravimetry (GRACE, GRACE-FO) with the help of large-scale hydrological models. While the results of the storage decomposition depend on model structure, little attention has been given to the impact of the way how vegetation is represented in these models. Although vegetation structure and activity represent the crucial link between water, carbon and energy cycles, their representation in large-scale hydrological models remains a major source of uncertainty. At the same time, the increasing availability and quality of Earth observation-based vegetation data provide valuable information with good prospects for improving model simulations and gaining better insights into the role of vegetation within the global water cycle. In this study, we use observation-based vegetation information such as vegetation indices and rooting depths for spatializing the parameters of a simple global hydrological model to define infiltration, root water uptake and transpiration processes. The parameters are further constrained by considering observations of terrestrial water storage anomalies (TWS), soil moisture, evapotranspiration (ET) and gridded runoff (Q) estimates in a multi-criteria calibration approach. We assess the implications of including vegetation on the simulation results, with a particular focus on the partitioning between water storage components. To isolate the effect of vegetation, we compare a model experiment with vegetation parameters varying in space and time to a baseline experiment in which all parameters are calibrated as static, globally uniform values. Both experiments show good overall performance, but including vegetation data led to even better performance and more physically plausible parameter values. Largest improvements regarding TWS and ET were seen in supply-limited (semi-arid) regions and in the tropics, whereas Q simulations improve mainly in northern latitudes. While the total fluxes and storages are similar, accounting for vegetation substantially changes the contributions of snow and different soil water storage components to the TWS variations, with the dominance of an intermediate water pool that interacts with the fast plant accessible soil moisture and the delayed water storage. The findings indicate the important role of deeper moisture storages as well as groundwater-soil moisture-vegetation interactions as a key to understanding TWS variations. We highlight the need for further observations to identify the adequate model structure rather than only model parameters for a reasonable representation and interpretation of vegetation-water interactions.


2020 ◽  
Author(s):  
Gaohong Yin ◽  
Barton Forman ◽  
Jing Wang

<p>Accurate estimation of terrestrial water storage (TWS) is crucial in the characterization of the terrestrial hydrologic cycle. The launch of GRACE and GRACE Follow-On (GRACE-FO) missions provide an unprecedented opportunity to monitor the change in TWS across the globe. However, the spatial and temporal resolutions provided by GRACE/GRACE-FO are often too coarse for many hydrologic applications. Land surface models (LSMs) provide estimates of TWS at a finer spatio-temporal resolution, but most LSMs lack complete, all-encompassing physical representations of the hydrological system such as deep groundwater storage or anthropogenic influences (e.g., groundwater pumping and surface water regulation). In recent years, geodetic measurements from the ground-based Global Positioning System (GPS) network have been increasingly used in hydrologic studies based on the elastic response of the Earth’s surface to mass redistribution. This study explores the potential of improving our knowledge in TWS change via merging the information provided by ground-based GPS, GRACE, and the NASA Catchment Land Surface Model (Catchment), especially for the TWS change during an extended drought period.</p> <p> </p> <p>Ground-based GPS observations of vertical displacement and GRACE TWS retrievals were assimilated into the Catchment LSM, respectively, using an ensemble Kalman filter (EnKF) in order to improve the estimation accuracy of TWS change. The data assimilation (DA) framework effectively downscaled TWS into its constituent components (e.g., snow and soil moisture) as well as improved estimates of hydrologic fluxes (e.g., runoff). Estimated TWS change from the open loop (OL; without assimilation) and GPS DA (i.e., using GPS-based vertical displacement during assimilation) simulations were evaluated against GRACE TWS retrievals. Results show that GPS DA improved estimation accuracy of TWS change relative to the OL, especially during an extended drought period post-2011 in the western United States (e.g., the correlation coefficient R<sub>OL</sub> = 0.46 and R<sub>GPSDA</sub> = 0.82 in the Great Basin). The performance of GPS DA and GRACE DA in estimating TWS constituent components and hydrologic fluxes were evaluated against in situ measurements. Results show that GPS DA improves snow water equivalent (SWE) estimates with improved R values found over 76% of all pixels that are collocated with in situ stations in the Great Basin. The findings in this study indicate the potential use of GPS DA and GRACE DA for TWS characterization. Both GRACE and ground-based GPS provide complementary TWS change information, which helps correct for missing physics in the LSM. Additionally, this study provides motivation for a multi-variate assimilation approach to simultaneously merge both GRACE and ground-based GPS into an LSM to further improve modeled TWS and its constituent components.</p>


Land ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 15 ◽  
Author(s):  
Sabastine Ugbaje ◽  
Thomas Bishop

Vegetation activity in many parts of Africa is constrained by dynamics in the hydrologic cycle. Using satellite products, the relative importance of soil moisture, rainfall, and terrestrial water storage (TWS) on vegetation greenness seasonality and anomaly over Africa were assessed for the period between 2003 and 2015. The possible delayed response of vegetation to water availability was considered by including 0–6 and 12 months of the hydrological variables lagged in time prior to the vegetation greenness observations. Except in the drylands, the relationship between vegetation greenness seasonality and the hydrological measures was generally strong across Africa. Contrarily, anomalies in vegetation greenness were generally less coupled to anomalies in water availability, except in some parts of eastern and southern Africa where a moderate relationship was evident. Soil moisture was the most important variable driving vegetation greenness in more than 50% of the areas studied, followed by rainfall when seasonality was considered, and by TWS when the monthly anomalies were used. Soil moisture and TWS were generally concurrent or lagged vegetation by 1 month, whereas precipitation lagged vegetation by 1–2 months. Overall, the results underscore the pre-eminence of soil moisture as an indicator of vegetation greenness among satellite measured hydrological variables.


2019 ◽  
Vol 124 (14) ◽  
pp. 7786-7796 ◽  
Author(s):  
Ajiao Chen ◽  
Huade Guan ◽  
Okke Batelaan ◽  
Xinping Zhang ◽  
Xinguang He

Sign in / Sign up

Export Citation Format

Share Document