scholarly journals CHARACTERIZATION OF LAND COVER SEASONALITY IN SENTINEL-1 TIME SERIES DATA

Author(s):  
C. Dubois ◽  
M. M. Mueller ◽  
C. Pathe ◽  
T. Jagdhuber ◽  
F. Cremer ◽  
...  

Abstract. In this study, we analyze Sentinel-1 time series data to characterize the observed seasonality of different land cover classes in eastern Thuringia, Germany and to identify multi-temporal metrics for their classification. We assess the influence of different polarizations and different pass directions on the multi-temporal backscatter profile. The novelty of this approach is the determination of phenological parameters, based on a tool that has been originally developed for optical imagery. Furthermore, several additional multitemporal metrics are determined for the different classes, in order to investigate their separability for potential multi-temporal classification schemes. The results of the study show a seasonality for vegetation classes, which differs depending on the considered class: whereas pastures and broad-leaved forests show a decrease of the backscatter in VH polarization during summer, an increase of the backscatter in VH polarization is observed for coniferous forest. The observed seasonality is discussed together with meteorological information (precipitation and air temperature). Furthermore, a dependence of the backscatter of the pass direction (ascending/descending) is observed particularly for the urban land cover classes. Multi-temporal metrics indicate a good separability of principal land cover classes such as urban, agricultural and forested areas, but further investigation and use of seasonal parameters is needed for a distinct separation of specific forest sub-classes such as coniferous and deciduous.

2020 ◽  
Author(s):  
Alejandro Coca Castro ◽  
Louis Reymondin ◽  
Mark Mulligan

<p>Deforestation remains one of the largest contributors to global greenhouse emissions. Despite the efforts in monitoring forest change, there is still a lack of pan-tropical spatially-explicit data informing the subsequent land cover (LC) changes over deforested areas (also known as post-loss LC). Based on this premise, this research focuses on predicting post-loss LC over deforested areas as detected by Terra-i, an early warning system of pantropical forest change providing alerts every 16-days from 2004 to present at spatial resolution of 250 m. A supervised deep neural network model suited to extract spatio-temporal patterns from dense earth observation time series data was leveraged in this work by using 16-day MODIS images of 2015. The model was trained according to nine labelled datasets representing different number of LC classes and complexity. These datasets were generated from pre-existing global LC maps with a native spatial resolution ranging from 100 m to 500 m. The effectiveness of the trained models in producing accurate predictions of post-loss LC was assessed over the Amazon region, the largest continuous region of tropical forest in the world. A two-stage assessment approach was conducted to determine the most suitable labelled datasets to predict post-loss LC over Terra-i’s areas. For the first stage, traditional metrics for the assessment of the quality of LC thematic data — e.g. overall accuracy, per-class mapping accuracy, area (or quantity) disagreement and allocation disagreement — were computed according to the test partitions from the labelled datasets. A second stage consisted in using the trained models in 2015 to make predictions for all available years of MODIS satellite imagery, from 2001 to 2018, across seven representative areas distributed in the Amazon. The observed LC predictions were masked using annual aggregated data of Terra-i from 2004 to 2010. The post-LC data by trained model, which represents a given labelled dataset, was verified by i) visualising the temporal and spatial distribution of the most frequent subsequent LC changes; and ii) comparing with Mapbiomas Amazonia, a regional-tuned multi-temporal LC dataset from 2000 to 2017 for the whole Amazon. The results showed that one out of the nine labelled datasets allowed the supervised deep learning model to produce reasonable spatial predictions and classification accuracies (overall accuracy of 86.36±0.64, area disagreement of 5.34±0.39 and allocation disagreement of 8.31±0.64) according to the test partition data. Moreover, the trained model provided similar patterns of post-loss LC as informed by the Mapbiomas dataset. Due to the nature of the model (i.e. neural network) and input data (i.e. global), it is expected the model is scalable to other pantropical areas. The insights and products derived throughout this study are targeted to reduce current uncertainties and challenges in the calculation of global and regional drivers and impacts of deforestation in tropical forests and landscapes.</p>


2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


2017 ◽  
Vol 10 (2) ◽  
pp. 32 ◽  
Author(s):  
Dengqiu Li ◽  
Dengsheng Lu ◽  
Ming Wu ◽  
Xuexin Shao ◽  
Jinhong Wei

2017 ◽  
pp. 211-230
Author(s):  
W. Kulp Christopher ◽  
J. Niskala Brandon

2020 ◽  
Vol 12 (18) ◽  
pp. 3091
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Jiangning Yang

Percentile features derived from Landsat time-series data are widely adopted in land-cover classification. However, the temporal distribution of Landsat valid observations is highly uneven across different pixels due to the gaps resulting from clouds, cloud shadows, snow, and the scan line corrector (SLC)-off problem. In addition, when applying percentile features, land-cover change in time-series data is usually not considered. In this paper, an improved percentile called the time-series model (TSM)-adjusted percentile is proposed for land-cover classification based on Landsat data. The Landsat data were first modeled using three different time-series models, and the land-cover changes were continuously monitored using the continuous change detection (CCD) algorithm. The TSM-adjusted percentiles for stable pixels were then derived from the synthetic time-series data without gaps. Finally, the TSM-adjusted percentiles were used for generating supervised random forest classifications. The proposed methods were implemented on Landsat time-series data of three study areas. The classification results were compared with those obtained using the original percentiles derived from the original time-series data with gaps. The results show that the land-cover classifications obtained using the proposed TSM-adjusted percentiles have significantly higher overall accuracies than those obtained using the original percentiles. The proposed method was more effective for forest types with obvious phenological characteristics and with fewer valid observations. In addition, it was also robust to the training data sampling strategy. Overall, the methods proposed in this work can provide accurate characterization of land cover and improve the overall classification accuracy based on such metrics. The findings are promising for percentile-based land cover classification using Landsat time series data, especially in the areas with frequent cloud coverage.


2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.


2020 ◽  
Vol 12 (17) ◽  
pp. 2735 ◽  
Author(s):  
Carlos M. Souza ◽  
Julia Z. Shimbo ◽  
Marcos R. Rosa ◽  
Leandro L. Parente ◽  
Ane A. Alencar ◽  
...  

Brazil has a monitoring system to track annual forest conversion in the Amazon and most recently to monitor the Cerrado biome. However, there is still a gap of annual land use and land cover (LULC) information in all Brazilian biomes in the country. Existing countrywide efforts to map land use and land cover lack regularly updates and high spatial resolution time-series data to better understand historical land use and land cover dynamics, and the subsequent impacts in the country biomes. In this study, we described a novel approach and the results achieved by a multi-disciplinary network called MapBiomas to reconstruct annual land use and land cover information between 1985 and 2017 for Brazil, based on random forest applied to Landsat archive using Google Earth Engine. We mapped five major classes: forest, non-forest natural formation, farming, non-vegetated areas, and water. These classes were broken into two sub-classification levels leading to the most comprehensive and detailed mapping for the country at a 30 m pixel resolution. The average overall accuracy of the land use and land cover time-series, based on a stratified random sample of 75,000 pixel locations, was 89% ranging from 73 to 95% in the biomes. The 33 years of LULC change data series revealed that Brazil lost 71 Mha of natural vegetation, mostly to cattle ranching and agriculture activities. Pasture expanded by 46% from 1985 to 2017, and agriculture by 172%, mostly replacing old pasture fields. We also identified that 86 Mha of the converted native vegetation was undergoing some level of regrowth. Several applications of the MapBiomas dataset are underway, suggesting that reconstructing historical land use and land cover change maps is useful for advancing the science and to guide social, economic and environmental policy decision-making processes in Brazil.


2020 ◽  
Vol 12 (22) ◽  
pp. 3798
Author(s):  
Lei Ma ◽  
Michael Schmitt ◽  
Xiaoxiang Zhu

Recently, time-series from optical satellite data have been frequently used in object-based land-cover classification. This poses a significant challenge to object-based image analysis (OBIA) owing to the presence of complex spatio-temporal information in the time-series data. This study evaluates object-based land-cover classification in the northern suburbs of Munich using time-series from optical Sentinel data. Using a random forest classifier as the backbone, experiments were designed to analyze the impact of the segmentation scale, features (including spectral and temporal features), categories, frequency, and acquisition timing of optical satellite images. Based on our analyses, the following findings are reported: (1) Optical Sentinel images acquired over four seasons can make a significant contribution to the classification of agricultural areas, even though this contribution varies between spectral bands for the same period. (2) The use of time-series data alleviates the issue of identifying the “optimal” segmentation scale. The finding of this study can provide a more comprehensive understanding of the effects of classification uncertainty on object-based dense multi-temporal image classification.


2010 ◽  
Vol 2 (2) ◽  
pp. 388-415 ◽  
Author(s):  
Willem J.D. Van Leeuwen ◽  
Jennifer E. Davison ◽  
Grant M. Casady ◽  
Stuart E. Marsh

Sign in / Sign up

Export Citation Format

Share Document