scholarly journals RESNET-BASED TREE SPECIES CLASSIFICATION USING UAV IMAGES

Author(s):  
S. Natesan ◽  
C. Armenakis ◽  
U. Vepakomma

<p><strong>Abstract.</strong> Tree species classification at individual tree level is a challenging problem in forest management. Deep learning, a cutting-edge technology evolved from Artificial Intelligence, was seen to outperform other techniques when it comes to complex problems such as image classification. In this work, we present a novel method to classify forest tree species through high resolution RGB images acquired with a simple consumer grade camera mounted on a UAV platform using Residual Neural Networks. We used UAV RGB images acquired over three years that varied in numerous acquisition parameters such as season, time, illumination and angle to train the neural network. To begin with, we have experimented with limited data towards the identification of two pine species namely red pine and white pine from the rest of the species. We performed two experiments, first with the images from all three acquisition years and the second with images from only one acquisition year. In the first experiment, we obtained 80% classification accuracy when the trained network was tested on a distinct set of images and in the second experiment, we obtained 51% classification accuracy. As a part of this work, a novel dataset of high-resolution labelled tree species is generated that can be used to conduct further studies involving deep neural networks in forestry.</p>

2020 ◽  
Vol 12 (7) ◽  
pp. 1070 ◽  
Author(s):  
Somayeh Nezami ◽  
Ehsan Khoramshahi ◽  
Olli Nevalainen ◽  
Ilkka Pölönen ◽  
Eija Honkavaara

Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were employed to classify tree species in a test site in Finland. The classifiers were trained with a dataset of 3039 manually labelled trees. Then the accuracies were assessed by employing independent datasets of 803 records. To find the most efficient set of feature combination, we compare the performances of 3D-CNN models trained with hyperspectral (HS) channels, Red-Green-Blue (RGB) channels, and canopy height model (CHM), separately and combined. It is demonstrated that the proposed 3D-CNN model with RGB and HS layers produces the highest classification accuracy. The producer accuracy of the best 3D-CNN classifier on the test dataset were 99.6%, 94.8%, and 97.4% for pines, spruces, and birches, respectively. The best 3D-CNN classifier produced ~5% better classification accuracy than the MLP with all layers. Our results suggest that the proposed method provides excellent classification results with acceptable performance metrics for HS datasets. Our results show that pine class was detectable in most layers. Spruce was most detectable in RGB data, while birch was most detectable in the HS layers. Furthermore, the RGB datasets provide acceptable results for many low-accuracy applications.


Forests ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Kepu Wang ◽  
Tiejun Wang ◽  
Xuehua Liu

With the significant progress of urbanization, cities and towns are suffering from air pollution, heat island effects, and other environmental problems. Urban vegetation, especially trees, plays a significant role in solving these ecological problems. To maximize services provided by vegetation, urban tree species should be properly selected and optimally arranged. Therefore, accurate classification of tree species in urban environments has become a major issue. In this paper, we reviewed the potential of light detection and ranging (LiDAR) data to improve the accuracy of urban tree species classification. In detail, we reviewed the studies using LiDAR data in urban tree species mapping, especially studies where LiDAR data was fused with optical imagery, through classification accuracy comparison, general workflow extraction, and discussion and summarizing of the specific contribution of LiDAR. It is concluded that combining LiDAR data in urban tree species identification could achieve better classification accuracy than using either dataset individually, and that such improvements are mainly due to finer segmentation, shadowing effect reduction, and refinement of classification rules based on LiDAR. Furthermore, some suggestions are given to improve the classification accuracy on a finer and larger species level, while also aiming to maintain classification costs.


2020 ◽  
Vol 8 (4) ◽  
pp. 310-333
Author(s):  
Sowmya Natesan ◽  
Costas Armenakis ◽  
Udayalakshmi Vepakomma

Tree species identification at the individual tree level is crucial for forest operations and management, yet its automated mapping remains challenging. Emerging technology, such as the high-resolution imagery from unmanned aerial vehicles (UAV) that is now becoming part of every forester’s surveillance kit, can potentially provide a solution to better characterize the tree canopy. To address this need, we have developed an approach based on a deep Convolutional Neural Network (CNN) to classify forest tree species at the individual tree-level that uses high-resolution RGB images acquired from a consumer-grade camera mounted on a UAV platform. This work explores the ability of the Dense Convolutional Network (DenseNet) to classify commonly available economic coniferous tree species in eastern Canada. The network was trained using multitemporal images captured under varying acquisition parameters to include seasonal, temporal, illumination, and angular variability. Validation of this model using distinct images over a mixed-wood forest in Ontario, Canada, showed over 84% classification accuracy in distinguishing five predominant species of coniferous trees. The model remains highly robust even when using images taken during different seasons and times, and with varying illumination and angles.


2020 ◽  
Vol 12 (7) ◽  
pp. 1128 ◽  
Author(s):  
Kaili Cao ◽  
Xiaoli Zhang

Tree species classification is important for the management and sustainable development of forest resources. Traditional object-oriented tree species classification methods, such as support vector machines, require manual feature selection and generally low accuracy, whereas deep learning technology can automatically extract image features to achieve end-to-end classification. Therefore, a tree classification method based on deep learning is proposed in this study. This method combines the semantic segmentation network U-Net and the feature extraction network ResNet into an improved Res-UNet network, where the convolutional layer of the U-Net network is represented by the residual unit of ResNet, and linear interpolation is used instead of deconvolution in each upsampling layer. At the output of the network, conditional random fields are used for post-processing. This network model is used to perform classification experiments on airborne orthophotos of Nanning Gaofeng Forest Farm in Guangxi, China. The results are then compared with those of U-Net and ResNet networks. The proposed method exhibits higher classification accuracy with an overall classification accuracy of 87%. Thus, the proposed model can effectively implement forest tree species classification and provide new opportunities for tree species classification in southern China.


2021 ◽  
Author(s):  
Sergio Marconi ◽  
Ben G Weinstein ◽  
Sheng Zou ◽  
Stephanie Ann Bohlman ◽  
Alina Zare ◽  
...  

Advances in remote sensing imagery and computer vision applications unlock the potential for developing algorithms to classify individual trees from remote sensing at unprecedented scales. However, most approaches to date focus on site-specific applications and a small number of taxonomic groups. This limitation makes it hard to evaluate whether these approaches generalize well across broader geographic areas and ecosystems. Leveraging field surveys and hyperspectral remote sensing data from the National Ecological Observatory Network (NEON), we developed a continental extent model for tree species classification that can be applied to the entire network including a wide range of US terrestrial ecosystems. We compared the performance of the generalized approach to models trained at each individual site, evaluating advantages and challenges posed by training species classifiers at the US scale. We evaluated the effect of geography, environmental, and ecological conditions on the accuracy and precision of species predictions. On average, the general model resulted in good overall classification accuracy (micro-F1 score), with better accuracy than site-specific classifiers (average individual tree level accuracy of 0.77 for the general model and 0.72 for site-specific models). Aggregating species to the genus-level increased accuracy to 0.83. Regions with more species exhibited lower classification accuracy. Trees were more likely to be confused with congeneric and co-occurring species and confusion was highest for trees with structural damage and in complex closed-canopy forests. The model produced accurate estimates of uncertainty, correctly identifying trees where confusion was likely. Using only data from NEON this single integrated classifier can make predictions for 20% of all tree species found in forest ecosystems across the US, suggesting the potential for broad scale general models for species classification from hyperspectral imaging.


Author(s):  
Somayeh Nezami ◽  
Ehsan Khoramshahi ◽  
Olli Nevalainen ◽  
Ilkka Pölönen ◽  
Eija Honkavaara

Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, bio-mass estimation, etc. Deep Neural Networks (DNN) have shown superior results when comparing with conventional machine learning methods such as Multi-Layer Perceptron (MLP) in cases of huge input data. The objective of this research was to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were employed to classify tree species in a test site in Finland. The classifiers were trained with a dataset of 3039 manually labelled trees. Then the accuracies were assessed by employing independent datasets of 803 records. To find the most efficient set of feature combination, we compare the performances of 3D-CNN models trained with hyperspectral (HS) channels, RGB channels, and canopy height model (CHM), separately and combined. It is demonstrated that the proposed 3D-CNN model with RGB and HS layers produces the highest classification accuracy. The producer accuracy of the best 3D-CNN classifier on the test dataset were 99.6%, 94.8%, and 97.4% for pines, spruces, and birches, respectively. The best 3D-CNN classifier produced ~5% better classification accuracy than the MLP with all layers. Our results suggest that the proposed method provides excellent classification results with acceptable performance metrics for HS datasets. Our results show that pine class was detectable in most layers. Spruce was most detectable in RGB data, while birch was most detectable in the HS layers. Furthermore, the RGB datasets provide acceptable results for many low-accuracy applications.


2021 ◽  
Vol 13 (10) ◽  
pp. 1868
Author(s):  
Martina Deur ◽  
Mateo Gašparović ◽  
Ivan Balenović

Quality tree species information gathering is the basis for making proper decisions in forest management. By applying new technologies and remote sensing methods, very high resolution (VHR) satellite imagery can give sufficient spatial detail to achieve accurate species-level classification. In this study, the influence of pansharpening of the WorldView-3 (WV-3) satellite imagery on classification results of three main tree species (Quercus robur L., Carpinus betulus L., and Alnus glutinosa (L.) Geartn.) has been evaluated. In order to increase tree species classification accuracy, three different pansharpening algorithms (Bayes, RCS, and LMVM) have been conducted. The LMVM algorithm proved the most effective pansharpening technique. The pixel- and object-based classification were applied to three pansharpened imageries using a random forest (RF) algorithm. The results showed a very high overall accuracy (OA) for LMVM pansharpened imagery: 92% and 96% for tree species classification based on pixel- and object-based approach, respectively. As expected, the object-based exceeded the pixel-based approach (OA increased by 4%). The influence of fusion on classification results was analyzed as well. Overall classification accuracy was improved by the spatial resolution of pansharpened images (OA increased by 7% for pixel-based approach). Also, regardless of pixel- or object-based classification approaches, the influence of the use of pansharpening is highly beneficial to classifying complex, natural, and mixed deciduous forest areas.


2009 ◽  
Vol 2 (1) ◽  
pp. 19-35 ◽  
Author(s):  
Eetu Puttonen ◽  
Paula Litkey ◽  
Juha Hyyppä

PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6227 ◽  
Author(s):  
Michele Dalponte ◽  
Lorenzo Frizzera ◽  
Damiano Gianelle

An international data science challenge, called National Ecological Observatory Network—National Institute of Standards and Technology data science evaluation, was set up in autumn 2017 with the goal to improve the use of remote sensing data in ecological applications. The competition was divided into three tasks: (1) individual tree crown (ITC) delineation, for identifying the location and size of individual trees; (2) alignment between field surveyed trees and ITCs delineated on remote sensing data; and (3) tree species classification. In this paper, the methods and results of team Fondazione Edmund Mach (FEM) are presented. The ITC delineation (Task 1 of the challenge) was done using a region growing method applied to a near-infrared band of the hyperspectral images. The optimization of the parameters of the delineation algorithm was done in a supervised way on the basis of the Jaccard score using the training set provided by the organizers. The alignment (Task 2) between the delineated ITCs and the field surveyed trees was done using the Euclidean distance among the position, the height, and the crown radius of the ITCs and the field surveyed trees. The classification (Task 3) was performed using a support vector machine classifier applied to a selection of the hyperspectral bands and the canopy height model. The selection of the bands was done using the sequential forward floating selection method and the Jeffries Matusita distance. The results of the three tasks were very promising: team FEM ranked first in the data science competition in Task 1 and 2, and second in Task 3. The Jaccard score of the delineated crowns was 0.3402, and the results showed that the proposed approach delineated both small and large crowns. The alignment was correctly done for all the test samples. The classification results were good (overall accuracy of 88.1%, kappa accuracy of 75.7%, and mean class accuracy of 61.5%), although the accuracy was biased toward the most represented species.


2019 ◽  
Vol 11 (12) ◽  
pp. 1413 ◽  
Author(s):  
Víctor González-Jaramillo ◽  
Andreas Fries ◽  
Jörg Bendix

The present investigation evaluates the accuracy of estimating above-ground biomass (AGB) by means of two different sensors installed onboard an unmanned aerial vehicle (UAV) platform (DJI Inspire I) because the high costs of very high-resolution imagery provided by satellites or light detection and ranging (LiDAR) sensors often impede AGB estimation and the determination of other vegetation parameters. The sensors utilized included an RGB camera (ZENMUSE X3) and a multispectral camera (Parrot Sequoia), whose images were used for AGB estimation in a natural tropical mountain forest (TMF) in Southern Ecuador. The total area covered by the sensors included 80 ha at lower elevations characterized by a fast-changing topography and different vegetation covers. From the total area, a core study site of 24 ha was selected for AGB calculation, applying two different methods. The first method used the RGB images and applied the structure for motion (SfM) process to generate point clouds for a subsequent individual tree classification. Per the classification at tree level, tree height (H) and diameter at breast height (DBH) could be determined, which are necessary input parameters to calculate AGB (Mg ha−1) by means of a specific allometric equation for wet forests. The second method used the multispectral images to calculate the normalized difference vegetation index (NDVI), which is the basis for AGB estimation applying an equation for tropical evergreen forests. The obtained results were validated against a previous AGB estimation for the same area using LiDAR data. The study found two major results: (i) The NDVI-based AGB estimates obtained by multispectral drone imagery were less accurate due to the saturation effect in dense tropical forests, (ii) the photogrammetric approach using RGB images provided reliable AGB estimates comparable to expensive LiDAR surveys (R2: 0.85). However, the latter is only possible if an auxiliary digital terrain model (DTM) in very high resolution is available because in dense natural forests the terrain surface (DTM) is hardly detectable by passive sensors due to the canopy layer, which impedes ground detection.


Sign in / Sign up

Export Citation Format

Share Document