tree species classification
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 71)

H-INDEX

30
(FIVE YEARS 6)

2022 ◽  
Vol 184 ◽  
pp. 189-202
Author(s):  
Parvez Rana ◽  
Benoit St-Onge ◽  
Jean-François Prieur ◽  
Brindusa Cristina Budei ◽  
Anne Tolvanen ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 271
Author(s):  
Yinghui Zhao ◽  
Ye Ma ◽  
Lindi Quackenbush ◽  
Zhen Zhen

Individual-tree aboveground biomass (AGB) estimation can highlight the spatial distribution of AGB and is vital for precision forestry. Accurately estimating individual tree AGB is a requisite for accurate forest carbon stock assessment of natural secondary forests (NSFs). In this study, we investigated the performance of three machine learning and three ensemble learning algorithms in tree species classification based on airborne laser scanning (ALS) and WorldView-3 imagery, inversed the diameter at breast height (DBH) using an optimal tree height curve model, and mapped individual tree AGB for a site in northeast China using additive biomass equations, tree species, and inversed DBH. The results showed that the combination of ALS and WorldView-3 performed better than either single data source in tree species classification, and ensemble learning algorithms outperformed machine learning algorithms (except CNN). Seven tree species had satisfactory accuracy of individual tree AGB estimation, with R2 values ranging from 0.68 to 0.85 and RMSE ranging from 7.47 kg to 36.83kg. The average individual tree AGB was 125.32 kg and the forest AGB was 113.58 Mg/ha in the Maoershan study site in Heilongjiang Province, China. This study provides a way to classify tree species and estimate individual tree AGB of NSFs based on ALS data and WorldView-3 imagery.


2022 ◽  
Vol 43 (2) ◽  
pp. 532-548
Author(s):  
Tao Qi ◽  
Haowei Zhu ◽  
Junguo Zhang ◽  
Zihe Yang ◽  
Lei Chai ◽  
...  

2021 ◽  
Author(s):  
Sergio Marconi ◽  
Ben G Weinstein ◽  
Sheng Zou ◽  
Stephanie Ann Bohlman ◽  
Alina Zare ◽  
...  

Advances in remote sensing imagery and computer vision applications unlock the potential for developing algorithms to classify individual trees from remote sensing at unprecedented scales. However, most approaches to date focus on site-specific applications and a small number of taxonomic groups. This limitation makes it hard to evaluate whether these approaches generalize well across broader geographic areas and ecosystems. Leveraging field surveys and hyperspectral remote sensing data from the National Ecological Observatory Network (NEON), we developed a continental extent model for tree species classification that can be applied to the entire network including a wide range of US terrestrial ecosystems. We compared the performance of the generalized approach to models trained at each individual site, evaluating advantages and challenges posed by training species classifiers at the US scale. We evaluated the effect of geography, environmental, and ecological conditions on the accuracy and precision of species predictions. On average, the general model resulted in good overall classification accuracy (micro-F1 score), with better accuracy than site-specific classifiers (average individual tree level accuracy of 0.77 for the general model and 0.72 for site-specific models). Aggregating species to the genus-level increased accuracy to 0.83. Regions with more species exhibited lower classification accuracy. Trees were more likely to be confused with congeneric and co-occurring species and confusion was highest for trees with structural damage and in complex closed-canopy forests. The model produced accurate estimates of uncertainty, correctly identifying trees where confusion was likely. Using only data from NEON this single integrated classifier can make predictions for 20% of all tree species found in forest ecosystems across the US, suggesting the potential for broad scale general models for species classification from hyperspectral imaging.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1736
Author(s):  
Minfei Ma ◽  
Jianhong Liu ◽  
Mingxing Liu ◽  
Jingchao Zeng ◽  
Yuanhui Li

Obtaining accurate forest coverage of tree species is an important basis for the rational use and protection of existing forest resources. However, most current studies have mainly focused on broad tree classification, such as coniferous vs. broadleaf tree species, and a refined tree classification with tree species information is urgently needed. Although airborne LiDAR data or unmanned aerial vehicle (UAV) images can be used to acquire tree information even at the single tree level, this method will encounter great difficulties when applied to a large area. Therefore, this study takes the eastern regions of the Qilian Mountains as an example to explore the possibility of tree species classification with satellite-derived images. We used Sentinel-2 images to classify the study area’s major vegetation types, particularly four tree species, i.e., Sabina przewalskii (S.P.), Picea crassifolia (P.C.), Betula spp. (Betula), and Populus spp. (Populus). In addition to the spectral features, we also considered terrain and texture features in this classification. The results show that adding texture features can significantly increase the separation between tree species. The final classification result of all categories achieved an accuracy of 86.49% and a Kappa coefficient of 0.83. For trees, the classification accuracy was 90.31%, and their producer’s accuracy (PA) and user’s (UA) were all higher than 84.97%. We found that altitude, slope, and aspect all affected the spatial distribution of these four tree species in our study area. This study confirms the potential of Sentinel-2 images for the fine classification of tree species. Moreover, this can help monitor ecosystem biological diversity and provide references for inventory estimation.


2021 ◽  
Vol 13 (23) ◽  
pp. 4750
Author(s):  
Jianchang Chen ◽  
Yiming Chen ◽  
Zhengjun Liu

We propose the Point Cloud Tree Species Classification Network (PCTSCN) to overcome challenges in classifying tree species from laser data with deep learning methods. The network is mainly composed of two parts: a sampling component in the early stage and a feature extraction component in the later stage. We used geometric sampling to extract regions with local features from the tree contours since these tend to be species-specific. Then we used an improved Farthest Point Sampling method to extract the features from a global perspective. We input the intensity of the tree point cloud as a dimensional feature and spatial information into the neural network and mapped it to higher dimensions for feature extraction. We used the data obtained by Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle Laser Scanning (UAVLS) to conduct tree species classification experiments of white birch and larch. The experimental results showed that in both the TLS and UAVLS datasets, the input tree point cloud density and the highest feature dimensionality of the mapping had an impact on the classification accuracy of the tree species. When the single tree sample obtained by TLS consisted of 1024 points and the highest dimension of the network mapping was 512, the classification accuracy of the trained model reached 96%. For the individual tree samples obtained by UAVLS, which consisted of 2048 points and had the highest dimension of the network mapping of 1024, the classification accuracy of the trained model reached 92%. TLS data tree species classification accuracy of PCTSCN was improved by 2–9% compared with other models using the same point density, amount of data and highest feature dimension. The classification accuracy of tree species obtained by UAVLS was up to 8% higher. We propose PCTSCN to provide a new strategy for the intelligent classification of forest tree species.


2021 ◽  
pp. 319-324
Author(s):  
Elizaveta K. Sakharova ◽  
Dana D. Nurlyeva ◽  
Antonina A. Fedorova ◽  
Alexey R. Yakubov ◽  
Anton I. Kanev

2021 ◽  
pp. 1-23
Author(s):  
Nik Ahmad Faris Nik Effendi ◽  
Nurul Ain Mohd Zaki ◽  
Zulkiflee Abd Latif ◽  
Mohd Nazip Suratman ◽  
Sharifah Norashikin Bohari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document