scholarly journals UAV-BASED STRUCTURAL DAMAGE MAPPING – RESULTS FROM 6 YEARS OF RESEARCH IN TWO EUROPEAN PROJECTS

Author(s):  
N. Kerle ◽  
F. Nex ◽  
D. Duarte ◽  
A. Vetrivel

<p><strong>Abstract.</strong> Structural disaster damage detection and characterisation is one of the oldest remote sensing challenges, and the utility of virtually every type of active and passive sensor deployed on various air- and spaceborne platforms has been assessed. The proliferation and growing sophistication of UAV in recent years has opened up many new opportunities for damage mapping, due to the high spatial resolution, the resulting stereo images and derivatives, and the flexibility of the platform. We have addressed the problem in the context of two European research projects, RECONASS and INACHUS. In this paper we synthesize and evaluate the progress of 6 years of research focused on advanced image analysis that was driven by progress in computer vision, photogrammetry and machine learning, but also by constraints imposed by the needs of first responder and other civil protection end users. The projects focused on damage to individual buildings caused by seismic activity but also explosions, and our work centred on the processing of 3D point cloud information acquired from stereo imagery. Initially focusing on the development of both supervised and unsupervised damage detection methods built on advanced texture features and basic classifiers such as Support Vector Machine and Random Forest, the work moved on to the use of deep learning. In particular the coupling of image-derived features and 3D point cloud information in a Convolutional Neural Network (CNN) proved successful in detecting also subtle damage features. In addition to the detection of standard rubble and debris, CNN-based methods were developed to detect typical façade damage indicators, such as cracks and spalling, including with a focus on multi-temporal and multi-scale feature fusion. We further developed a processing pipeline and mobile app to facilitate near-real time damage mapping. The solutions were tested in a number of pilot experiments and evaluated by a variety of stakeholders.</p>

2021 ◽  
Vol 5 (11) ◽  
pp. 303
Author(s):  
Kian K. Sepahvand

Damage detection, using vibrational properties, such as eigenfrequencies, is an efficient and straightforward method for detecting damage in structures, components, and machines. The method, however, is very inefficient when the values of the natural frequencies of damaged and undamaged specimens exhibit slight differences. This is particularly the case with lightweight structures, such as fiber-reinforced composites. The nonlinear support vector machine (SVM) provides enhanced results under such conditions by transforming the original features into a new space or applying a kernel trick. In this work, the natural frequencies of damaged and undamaged components are used for classification, employing the nonlinear SVM. The proposed methodology assumes that the frequencies are identified sequentially from an experimental modal analysis; for the study propose, however, the training data are generated from the FEM simulations for damaged and undamaged samples. It is shown that nonlinear SVM using kernel function yields in a clear classification boundary between damaged and undamaged specimens, even for minor variations in natural frequencies.


2014 ◽  
Vol 17 (11) ◽  
pp. 1693-1704 ◽  
Author(s):  
E.L. Eskew ◽  
S. Jang

An increasing threat of global terrorism has led to concerns about bombings of buildings, which could cause minor to severe structural damage. After such an event, it is important to rapidly assess the damage to the building to ensure safe and efficient emergency response. Current methods of visual inspection and non-destructive testing are expensive, subjective, and time consuming for emergency responders' usage immediately after an attack. On the other hand, vibration-based damage detection methods with wireless smart sensors could provide rapid assessment of structural characteristics with low cost. For blast analysis, structural response is usually determined using a simplified SDOF version of the undamaged structure, such as used in a Pressure-Impulse (P-I) Diagram, or using more complex FEM (finite element method) models. However, the simplified models cannot take into account damage caused by blast focus at a specific location or on a specific element, which may induce local failure leading to potential progressive collapse, and the more complex FEM models take too long to derive applicable results to be effective for a rapid structural assessment. In this paper, a new method to incorporate vibration-based damage detection methods to calculate the multi degree of freedom structural stiffness for determining structural condition is provided to create a framework for the rapid structural condition assessment of buildings after a terrorist attack. The stiffness parameters are generated from the modal analysis of the measured vibration on the building, which are then used in a numerical simulation to determine its structural response from the blast. The calculated structural response is then compared to limit conditions that have been developed from ASCE blast design codes to determine the damage assessment. A laboratory-scale building frame has been employed to validate the developed use of experimentally determined stiffness by comparing the P-I diagram using the experimental stiffness with that from numerical models. The reasonable match between the P-I diagrams from the numerical models and the experiments shows the positive potential of the method. The framework and examples of how to develop a rapid condition assessment are presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Q. W. Yang ◽  
J. K. Liu ◽  
C.H. Li ◽  
C.F. Liang

Structural damage detection using measured response data has emerged as a new research area in civil, mechanical, and aerospace engineering communities in recent years. In this paper, a universal fast algorithm is presented for sensitivity-based structural damage detection, which can quickly improve the calculation accuracy of the existing sensitivity-based technique without any high-order sensitivity analysis or multi-iterations. The key formula of the universal fast algorithm is derived from the stiffness and flexibility matrix spectral decomposition theory. With the introduction of the key formula, the proposed method is able to quickly achieve more accurate results than that obtained by the original sensitivity-based methods, regardless of whether the damage is small or large. Three examples are used to demonstrate the feasibility and superiority of the proposed method. It has been shown that the universal fast algorithm is simple to implement and quickly gains higher accuracy over the existing sensitivity-based damage detection methods.


Author(s):  
W. Yuan ◽  
X. Yuan ◽  
Z. Fan ◽  
Z. Guo ◽  
X. Shi ◽  
...  

Abstract. Building Change Detection (BCD) via multi-temporal remote sensing images is essential for various applications such as urban monitoring, urban planning, and disaster assessment. However, most building change detection approaches only extract features from different kinds of remote sensing images for change index determination, which can not determine the insignificant changes of small buildings. Given co-registered multi-temporal remote sensing images, the illumination variations and misregistration errors always lead to inaccurate change detection results. This study investigates the applicability of multi-feature fusion from both directly extract 2D features from remote sensing images and 3D features extracted by the dense image matching (DIM) generated 3D point cloud for accurate building change index generation. This paper introduces a graph neural network (GNN) based end-to-end learning framework for building change detection. The proposed framework includes feature extraction, feature fusion, and change index prediction. It starts with a pre-trained VGG-16 network as a backend and uses U-net architecture with five layers for feature map extraction. The extracted 2D features and 3D features are utilized as input into GNN based feature fusion parts. In the GNN parts, we introduce a flexible context aggregation mechanism based on attention to address the illumination variations and misregistration errors, enabling the framework to reason about the image-based texture information and depth information introduced by DIM generated 3D point cloud jointly. After that, the GNN generated affinity matrix is utilized for change index determination through a Hungarian algorithm. The experiment conducted on a dataset that covered Setagaya-Ku, Tokyo area, shows that the proposed method generated change map achieved the precision of 0.762 and the F1-score of 0.68 at pixel-level. Compared to traditional image-based change detection methods, our approach learns prior over geometrical structure information from the real 3D world, which robust to the misregistration errors. Compared to CNN based methods, the proposed method learns to fuse 2D and 3D features together to represent more comprehensive information for building change index determination. The experimental comparison results demonstrated that the proposed approach outperforms the traditional methods and CNN based methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xuewen Wang ◽  
Qingzhan Zhao ◽  
Feng Han ◽  
Jianxin Zhang ◽  
Ping Jiang

To reduce data acquisition cost, this study proposed a novel method of individual tree height estimation and canopy extraction based on fusion of an airborne multispectral image and photogrammetric point cloud. A fixed-wing drone was deployed to acquire the true color and multispectral images of a shelter forest. The Structure-from-Motion (SfM) algorithm was used to reconstruct the 3D point cloud of the canopy. The 3D point cloud was filtered to acquire the ground point cloud and then interpolated to a Digital Elevation Model (DEM) using the Radial Basis Function Neural Network (RBFNN). The DEM was subtracted from the Digital Surface Model (DSM) generated from the original point cloud to get the canopy height model (CHM). The CHM was processed for the crown extraction using local maximum filters and watershed segmentation. Then, object-oriented methods were employed in the combination of 12 bands and CHM for image segmentation. To extract the tree crown, the Support Vector Machine (SVM) algorithm was used. The result of the object-oriented method was vectorized and superimposed on the CHM to estimate the tree height. Experimental results demonstrated that it is efficient to employ point cloud and the proposed approach has great potential in the tree height estimation. The proposed object-oriented method based on fusion of a multispectral image and CHM effectively reduced the oversegmentation and undersegmentation, with an increase in the F -score by 0.12–0.17. Our findings provided a reference for the health and change monitoring of shelter forests as well.


2018 ◽  
Vol 22 (3) ◽  
pp. 597-612 ◽  
Author(s):  
Chengbin Chen ◽  
Chudong Pan ◽  
Zepeng Chen ◽  
Ling Yu

With the rapid development of computation technologies, swarm intelligence–based algorithms become an innovative technique used for addressing structural damage detection issues, but traditional swarm intelligence–based structural damage detection methods often face with insufficient detection accuracy and lower robustness to noise. As an exploring attempt, a novel structural damage detection method is proposed to tackle the above deficiency via combining weighted strategy with trace least absolute shrinkage and selection operator (Lasso). First, an objective function is defined for the structural damage detection optimization problem by using structural modal parameters; a weighted strategy and the trace Lasso are also involved into the objection function. A novel antlion optimizer algorithm is then employed as a solution solver to the structural damage detection optimization problem. To assess the capability of the proposed structural damage detection method, two numerical simulations and a series of laboratory experiments are performed, and a comparative study on effects of different parameters, such as weighted coefficients, regularization parameters and damage patterns, on the proposed structural damage detection methods are also carried out. Illustrated results show that the proposed structural damage detection method via combining weighted strategy with trace Lasso is able to accurately locate structural damages and quantify damage severities of structures.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Eun-Taik Lee ◽  
Hee-Chang Eun

Damage detection methods can be classified into global and local approaches depending on the division of measurement locations in a structure. The former utilizes measurement data at all degrees of freedom (DOFs) for structural damage detection, while the latter utilizes data of members and substructures at a few DOFs. This paper presents a local method to detect damages by disassembling an entire structure into members. The constraint forces acting at the measured DOFs of the disassembled elements at the damaged state, and their internal stresses, are predicted. The proposed method detects locally damaged members of the entire structure by comparing the stress variations before and after damage. The static local damage can be explicitly detected when it is positioned along the constraint load paths. The validity of the proposed method is illustrated through the damage detection of two truss structures, and the disassembling (i.e., local) and global approaches are compared using numerical examples. The numerical applications consider the noise effect and single and multiple damage cases, including vertical, diagonal, and chord members of truss structures.


Sign in / Sign up

Export Citation Format

Share Document