scholarly journals ASSESSING CROPLAND ABANDONMENT FROM VIOLENT CONFLICT IN CENTRAL MALI WITH SENTINEL-2 AND GOOGLE EARTH ENGINE

Author(s):  
L. Boudinaud ◽  
S. A. Orenstein

Abstract. The proposed analysis based on Sentinel-2 imagery provides evidence of impacts of the conflict in the Mopti region (central Mali), which has led to widescale cropland abandonment. This area is characterized by rapidly rising levels of violence since 2018, due to the presence of armed groups and the proliferation of self-defence militias. This study investigates how high-resolution optical imagery can help evaluate the linkages between violence and land cover / land use (LCLU) change. The processing environment of Google Earth Engine was used to generate the so-called 3-Period TimeScan (3PTS) product, a RGB composite combining the maximum NDVI values in the beginning, in the middle and in the end of the growing season, used to single out cultivated land for each year of interest. Theoretically, the period between June 15th and October 15th covers an annual agricultural cycle for the considered area; consequently, images acquired during that period were used to generate the 3PTS composites for the year of interest (2019) and for pre-conflict years. By comparing the situations before and after the start of the crisis, each populated site was categorized according to the degree of cropland change detected in its surroundings. The resulting overview map enables a regional-scale interpretation of farming activities in 2019, clearly highlighting localized areas of cropland abandonment in the region and showing a strong spatial correlation with incidence of conflict.

2020 ◽  
Author(s):  
Dan Li ◽  
Baosheng Wu ◽  
Bowei Chen ◽  
Yanjun Wang ◽  
Yi Zhang ◽  
...  

<p><strong>Abstract:</strong> Water plays a vital role in plants, animals and human survival, as well as water resources planning and protection. The spatial and temporal changes of rivers have a profound impact on climate change and the scientific protection of the regional ecological environment in Qingzang-Tibet plateau. Due to the influence of snow and cloud cover, optical remote sensing images in this region have less effective coverage. Many researches in the past mainly faced the challenge of misclassification caused by shadows from cloud and mountain. In this study, we proposed a method to improve the extraction of rivers by reducing the effect of shadows by fusing Sentinel-1 radar data and Sentinel-2 optical imagery. For the optical imagery, water indices including MNDWI (Modified Normalized Difference Water Index) and RNDWI (Revised Normalized Difference Water Index) and morphological operations were used to extract the river coverage. In addition, radar data is used to extract water in areas where there is no optical image coverage or where optical images are misclassified by using a combination of both the histogram and Otsu threshold methods. The GEE (Google Earth Engine) platform is used to implement the analysis using two classification datasets at a regional level. Relevant results from Sentinel-1 and Sentinel-2 data showed that the RNDWI has a more accurate water extraction results in this region. We further compared the final river width results with the manually measured samples from Google Earth and situ data of hydrological stations for accuracy assessment. The R<sup>2 </sup>value is 0.90, and the standard deviation is 18.663m. The river width can be estimated well by this method, which can provide basic data for the study of water in depopulated zone.</p><p><strong>Keywords: </strong>Remote sensing, shadow removal, water extraction, water index, Otsu threshold, Google Earth Engine</p>


2021 ◽  
Vol 11 (9) ◽  
pp. 4258
Author(s):  
Jordan R. Cissell ◽  
Steven W. J. Canty ◽  
Michael K. Steinberg ◽  
Loraé T. Simpson

In this paper, we present the highest-resolution-available (10 m) national map of the mangrove ecosystems of Belize. These important ecosystems are increasingly threatened by human activities and climate change, support both marine and terrestrial biodiversity, and provide critical ecosystem services to coastal communities in Belize and throughout the Mesoamerican Reef ecoregion. Previous national- and international-level inventories document Belizean mangrove forests at spatial resolutions of 30 m or coarser, but many mangrove patches and loss events may be too small to be accurately mapped at these resolutions. Our 10 m map addresses this need for a finer-scale national mangrove inventory. We mapped mangrove ecosystems in Belize as of 2020 by performing a random forest classification of Sentinel-2 Multispectral Instrument imagery in Google Earth Engine. We mapped a total mangrove area of 578.54 km2 in 2020, with 372.04 km2 located on the mainland and 206.50 km2 distributed throughout the country’s islands and cayes. Our findings are substantially different from previous, coarser-resolution national mangrove inventories of Belize, which emphasizes the importance of high-resolution mapping efforts for ongoing conservation efforts.


2021 ◽  
Author(s):  
Melissa Latella ◽  
Arjen Luijendijk ◽  
Carlo Camporeale

<p>Coastal sand dunes provide a large variety of ecosystem services, among which the inland protection from marine floods. Nowadays, this protection is fundamental, and its importance will further increase in the future due to the rise of the sea level and storm violence induced by climate change. Despite the crucial role of coastal dunes and their potential application in mitigation strategies, the phenomenon of the coastal squeeze, which is mainly caused by the urban sprawl, is progressively reducing the extents of the areas where dune can freely undergo their dynamics, thus dramatically impairing their capability of providing ecosystem services.</p><p>Aiming to embed the use of satellite images in the study of coastal foredune and beach dynamics, we developed a classification algorithm that uses the satellite images and server-side functions of Google Earth Engine (GEE). The algorithm runs on the GEE Python API and allows the user to retrieve all the available images for the study site and the chosen time period from the selected sensor collection. The algorithm also filters the cloudy and saturated pixels and creates a percentile-composite image over which it applies a random forest classification algorithm. The classification is finally refined by defining a mask for land pixels only. </p><p>According to the provided training data and sensor selection, the algorithm can give different outcomes, ranging from sand and vegetation maps, beach width measurements, and shoreline time evolution visualization. This very versatile tool that can be used in a great variety of applications within the monitoring and understanding of the dune-beach systems and associated coastal ecosystem services. For instance, we show how this algorithm, combined with machine learning techniques and the assimilation of real data, can support the calibration of a coastal model that gives the natural extent of the beach width and that can be, therefore, used to plan restoration activities. </p>


2021 ◽  
pp. 777
Author(s):  
Andi Tenri Waru ◽  
Athar Abdurrahman Bayanuddin ◽  
Ferman Setia Nugroho ◽  
Nita Rukminasari

Pulau Tanakeke merupakan salah satu pulau dengan hutan mangrove yang luas di pesisir Sulawesi Selatan. Hutan mangrove ini menjadi ekosistem penting bagi masyarakat sekitar karena nilai ekologi maupun ekonominya. Namun, dalam kurun waktu sekitar tahun 1980-2000, keberadaan mangrove tersebut terancam oleh perubahan penggunaan lahan dan juga pemanfaatan yang berlebihan. Penelitian ini bertujuan untuk menganalisis perubahan temporal luas dan tingkat kerapatan hutan mangrove di Pulau Tanakeke antara tahun 2016 dan 2019. Metode analisis perubahan luasan hutan mangrove menggunakan data citra satelit Sentinel-2 multi temporal berdasarkan hasil klasifikasi hutan mangrove dengan menggunakan random forest pada platform Google Earth Engine. Akurasi keseluruhan hasil klasifikasi hutan mangrove tahun 2016 dan 2019 sebesar 91% dan 98%. Berdasarkan hasil analisis spasial diperoleh perubahan penurunan luasan mangrove yang signifikan dari 800,21 ha menjadi 640,15 ha. Kerapatan mangrove di Pulau Tanakeke sebagian besar tergolong kategori dalam kerapatan tinggi.


Author(s):  
Mohammad Ali Hemati ◽  
Mahdi Hasanlau ◽  
Masaud Mahdianpari ◽  
Fariba Mohammadimanesh

Author(s):  
Carsten Montzka ◽  
Bagher Bayat ◽  
Andreas Tewes ◽  
David Mengen ◽  
Harry Vereecken

2021 ◽  
Author(s):  
Luojia Hu ◽  
Wei Yao ◽  
Zhitong Yu ◽  
Yan Huang

<p>A high resolution mangrove map (e.g., 10-m), which can identify mangrove patches with small size (< 1 ha), is a central component to quantify ecosystem functions and help government take effective steps to protect mangroves, because the increasing small mangrove patches, due to artificial destruction and plantation of new mangrove trees, are vulnerable to climate change and sea level rise, and important for estimating mangrove habitat connectivity with adjacent coastal ecosystems as well as reducing the uncertainty of carbon storage estimation. However, latest national scale mangrove forest maps mainly derived from Landsat imagery with 30-m resolution are relatively coarse to accurately characterize the distribution of mangrove forests, especially those of small size (area < 1 ha). Sentinel imagery with 10-m resolution provide the opportunity for identifying these small mangrove patches and generating high-resolution mangrove forest maps. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features for random forest to classify mangroves in China. We found that Sentinel-2 imagery is more effective than Sentinel-1 in mangrove extraction, and a combination of SAR and MSI imagery can get a better accuracy (F1-score of 0.94) than using them separately (F1-score of 0.88 using Sentinel-1 only and 0.895 using Sentinel-2 only). The 10-m mangrove map derived by combining SAR and MSI data identified 20,003 ha mangroves in China and the areas of small mangrove patches (< 1 ha) was 1741 ha, occupying 8.7% of the whole mangrove area. The largest area (819 ha) of small mangrove patches is located in Guangdong Province, and in Fujian the percentage of small mangrove patches in total mangrove area is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest maps are expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of mangrove forest.</p>


2018 ◽  
Vol 10 (6) ◽  
pp. 859 ◽  
Author(s):  
Dimosthenis Traganos ◽  
Dimitris Poursanidis ◽  
Bharat Aggarwal ◽  
Nektarios Chrysoulakis ◽  
Peter Reinartz

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253209
Author(s):  
Jianfeng Li ◽  
Biao Peng ◽  
Yulu Wei ◽  
Huping Ye

To realize the accurate extraction of surface water in complex environment, this study takes Sri Lanka as the study area owing to the complex geography and various types of water bodies. Based on Google Earth engine and Sentinel-2 images, an automatic water extraction model in complex environment(AWECE) was developed. The accuracy of water extraction by AWECE, NDWI, MNDWI and the revised version of multi-spectral water index (MuWI-R) models was evaluated from visual interpretation and quantitative analysis. The results show that the AWECE model could significantly improve the accuracy of water extraction in complex environment, with an overall accuracy of 97.16%, and an extremely low omission error (0.74%) and commission error (2.35%). The AEWCE model could effectively avoid the influence of cloud shadow, mountain shadow and paddy soil on water extraction accuracy. The model can be widely applied in cloudy, mountainous and other areas with complex environments, which has important practical significance for water resources investigation, monitoring and protection.


Sign in / Sign up

Export Citation Format

Share Document