scholarly journals Fast registration of laser scans with 4-point congruent sets - what works and what doesn't

Author(s):  
P. W. Theiler ◽  
J. D. Wegner ◽  
K. Schindler

Sampling-based algorithms in the mould of RANSAC have emerged as one of the most successful methods for the fully automated registration of point clouds acquired by terrestrial laser scanning (TLS). Sampling methods in conjunction with 3D keypoint extraction, have shown promising results, e.g. the recent K-4PCS (Theiler et al., 2013). However, they still exhibit certain improbable failures, and are computationally expensive and slow if the overlap between scans is low. Here, we examine several variations of the basic K-4PCS framework that have the potential to improve its runtime and robustness. Since the method is inherently parallelizable, straight-forward multi-threading already brings down runtimes to a practically acceptable level (seconds to minutes). At a conceptual level, replacing the RANSAC error function with the more principled MSAC function (Torr and Zisserman, 2000) and introducing a minimum-distance prior to counter the near-field bias reduce failure rates by a factor of up to 4. On the other hand, replacing the repeated evaluation of the RANSAC error function with a voting scheme over the transformation parameters proved not to be generally applicable for the scan registration problem. All these possible extensions are tested experimentally on multiple challenging outdoor and indoor scenarios.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xinxiang Zhu ◽  
Craig L. Glennie ◽  
Benjamin A. Brooks

Abstract Quantifying off-fault deformation in the near field remains a challenge for earthquake monitoring using geodetic observations. We propose an automated change detection strategy using geometric primitives generated using a deep neural network, random sample consensus and least squares adjustment. Using mobile laser scanning point clouds of vineyards acquired after the magnitude 6.0 2014 South Napa earthquake, our results reveal centimeter-level horizontal ground deformation over three kilometers along a segment of the West Napa Fault. A fault trace is detected from rows of vineyards modeled as planar primitives from the accumulated coseismic response, and the postseismic surface displacement field is revealed by tracking displacements of vineyard posts modeled as cylindrical primitives. Interpreted from the detected changes, we summarized distributions of deformation versus off-fault distances and found evidence of off-fault deformation. The proposed framework using geometric primitives is shown to be accurate and practical for detection of near-field off-fault deformation.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8162
Author(s):  
Sha Gao ◽  
Zhengnan Zhang ◽  
Lin Cao

Individual tree structural parameters are vital for precision silviculture in planted forests. This study used near-field LiDAR (light detection and ranging) data (i.e., unmanned aerial vehicle laser scanning (ULS) and ground backpack laser scanning (BLS)) to extract individual tree structural parameters and fit volume models in subtropical planted forests in southeastern China. To do this, firstly, the tree height was acquired from ULS data and the diameter at breast height (DBH) was acquired from BLS data by using individual tree segmentation algorithms. Secondly, point clouds of the complete forest canopy were obtained through the combination of ULS and BLS data. Finally, five tree taper models were fitted using the LiDAR-extracted structural parameters of each tree, and then the optimal taper model was selected. Moreover, standard volume models were used to calculate the stand volume; then, standing timber volume tables were created for dawn redwood and poplar. The extraction of individual tree structural parameters exhibited good performance. The volume model had a good performance in calculating the standing volume for dawn redwood and poplar. Our results demonstrate that near-field LiDAR has a strong capability of extracting tree structural parameters and creating volume tables for subtropical planted forests.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jannik Janßen ◽  
Heiner Kuhlmann ◽  
Christoph Holst

Abstract In almost all projects, in which terrestrial laser scanning is used, the scans must be registered after the data acquisition. Despite more and more new and automated methods for registration, the classical target-based registration is still one of the standard procedures. The advantages are obvious: independence from the scan object, the geometric configuration can often be influenced and registration results are easy to interpret. When plane black-and-white targets are used, the algorithm for estimating the target center fits a plane through the scan of a target, anyway. This information about the plane orientation has remained unused so far. Hence, including this information in the registration does not require any additional effort in the scanning process. In this paper, we extend the target-based registration by the plane orientation. We describe the required methodology, analyze the benefits in terms of precision and reliability and discuss in which cases the extension is useful and brings a relevant advantage. Based on simulations and two case studies we find out that especially for registrations with bad geometric configurations the extension brings a big advantage. The extension enables registrations that are much more precise. These are also visible on the registered point clouds. Thus, only a methodological change in the target-based registration improves its results.


2021 ◽  
Vol 13 (11) ◽  
pp. 2135
Author(s):  
Jesús Balado ◽  
Pedro Arias ◽  
Henrique Lorenzo ◽  
Adrián Meijide-Rodríguez

Mobile Laser Scanning (MLS) systems have proven their usefulness in the rapid and accurate acquisition of the urban environment. From the generated point clouds, street furniture can be extracted and classified without manual intervention. However, this process of acquisition and classification is not error-free, caused mainly by disturbances. This paper analyses the effect of three disturbances (point density variation, ambient noise, and occlusions) on the classification of urban objects in point clouds. From point clouds acquired in real case studies, synthetic disturbances are generated and added. The point density reduction is generated by downsampling in a voxel-wise distribution. The ambient noise is generated as random points within the bounding box of the object, and the occlusion is generated by eliminating points contained in a sphere. Samples with disturbances are classified by a pre-trained Convolutional Neural Network (CNN). The results showed different behaviours for each disturbance: density reduction affected objects depending on the object shape and dimensions, ambient noise depending on the volume of the object, while occlusions depended on their size and location. Finally, the CNN was re-trained with a percentage of synthetic samples with disturbances. An improvement in the performance of 10–40% was reported except for occlusions with a radius larger than 1 m.


2021 ◽  
Vol 13 (11) ◽  
pp. 2195
Author(s):  
Shiming Li ◽  
Xuming Ge ◽  
Shengfu Li ◽  
Bo Xu ◽  
Zhendong Wang

Today, mobile laser scanning and oblique photogrammetry are two standard urban remote sensing acquisition methods, and the cross-source point-cloud data obtained using these methods have significant differences and complementarity. Accurate co-registration can make up for the limitations of a single data source, but many existing registration methods face critical challenges. Therefore, in this paper, we propose a systematic incremental registration method that can successfully register MLS and photogrammetric point clouds in the presence of a large number of missing data, large variations in point density, and scale differences. The robustness of this method is due to its elimination of noise in the extracted linear features and its 2D incremental registration strategy. There are three main contributions of our work: (1) the development of an end-to-end automatic cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and restore the scale; and (3) an incremental registration strategy that simplifies the complex registration process. The experimental results show that this method can successfully achieve cross-source data registration, while other methods have difficulty obtaining satisfactory registration results efficiently. Moreover, this method can be extended to more point-cloud sources.


2021 ◽  
Vol 13 (3) ◽  
pp. 507
Author(s):  
Tasiyiwa Priscilla Muumbe ◽  
Jussi Baade ◽  
Jenia Singh ◽  
Christiane Schmullius ◽  
Christian Thau

Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 835
Author(s):  
Ville Luoma ◽  
Tuomas Yrttimaa ◽  
Ville Kankare ◽  
Ninni Saarinen ◽  
Jiri Pyörälä ◽  
...  

Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.


2021 ◽  
Vol 13 (8) ◽  
pp. 1584
Author(s):  
Pedro Martín-Lerones ◽  
David Olmedo ◽  
Ana López-Vidal ◽  
Jaime Gómez-García-Bermejo ◽  
Eduardo Zalama

As the basis for analysis and management of heritage assets, 3D laser scanning and photogrammetric 3D reconstruction have been probed as adequate techniques for point cloud data acquisition. The European Directive 2014/24/EU imposes BIM Level 2 for government centrally procured projects as a collaborative process of producing federated discipline-specific models. Although BIM software resources are intensified and increasingly growing, distinct specifications for heritage (H-BIM) are essential to driving particular processes and tools to efficiency shifting from point clouds to meaningful information ready to be exchanged using non-proprietary formats, such as Industry Foundation Classes (IFC). This paper details a procedure for processing enriched 3D point clouds into the REVIT software package due to its worldwide popularity and how closely it integrates with the BIM concept. The procedure will be additionally supported by a tailored plug-in to make high-quality 3D digital survey datasets usable together with 2D imaging, enhancing the capability to depict contextualized important graphical data to properly planning conservation actions. As a practical example, a 2D/3D enhanced combination is worked to accurately include into a BIM project, the length, orientation, and width of a big crack on the walls of the Castle of Torrelobatón (Spain) as a representative heritage building.


Sign in / Sign up

Export Citation Format

Share Document