scholarly journals First investigations of an ice core from Eisriesenwelt cave (Austria)

2010 ◽  
Vol 4 (3) ◽  
pp. 1525-1559 ◽  
Author(s):  
B. May ◽  
C. Spötl ◽  
D. Wagenbach ◽  
Y. Dublyansky ◽  
J. Liebl

Abstract. Investigations into the genesis and dynamical properties of cave ice are essential for assessing the climate significance of these underground glaciers. We drilled an ice core through a 7.1 m thick ice body filling a large cavern of the dynamic ice cave Eisenriesenwelt (Austria). In addition to visual core inspections, quasi-continuous measurements at 2 cm resolution comprised particulate matter, stable water isotope (δ18O, δD) and electrolytic conductivity profiles supplemented by specifically selected samples analysed for tritium and radiocarbon. We found that recent ablation led to an almost complete loss of bomb derived tritium removing any ice accumulated, since at least, the early fifties leaving the actual ice surface even below the natural tritium level. The small particulate organic masses made radiocarbon dating inconclusive, though a crude estimate gave a maximum ice age in the order of several thousand years. The visual stratigraphy and all investigated parameters showed a clear dichotomy between the upper 4 m and the bottom 3 m of the core, which points to a substantial change in the ice formation process. Main features of the core comprise the changing appearance and composition of distinct cyro-calcite layers, a extremely low total ion content and a surprisingly high variability of the isotope signature. Co-isotope evaluation (δD versus δ18O) of the core in comparison with data from precipitation and karst spring water clearly indicate that ice formation is governed by (slow) freezing of dripping water.

2011 ◽  
Vol 5 (1) ◽  
pp. 81-93 ◽  
Author(s):  
B. May ◽  
C. Spötl ◽  
D. Wagenbach ◽  
Y. Dublyansky ◽  
J. Liebl

Abstract. Investigations into the genesis and dynamical properties of cave ice are essential for assessing the climate significance of these underground glaciers. We drilled an ice core through a 7.1 m-thick ice body filling a large cavern of the dynamic ice cave Eisenriesenwelt (Austria). In addition to visual core inspections, quasi-continuous measurements at 2 cm resolution comprised particulate matter, stable water isotope (δ18O, δD) and electrolytic conductivity profiles supplemented by specifically selected samples analyzed for tritium and radiocarbon. We found that recent ablation led to an almost complete loss of bomb-derived tritium removing any ice accumulated since, at least, the early fifties leaving the actual ice surface even below the natural tritium level. The small particulate organic masses rendered radiocarbon dating inconclusive, though a crude estimate gave a basal ice age in the order of several thousand years. The visual stratigraphy and all investigated parameters showed a clear dichotomy between the upper 2 m and the bottom 3 m of the core, which points to a substantial change in the ice formation process. Main features of the core comprise the changing appearance and composition of distinct cryocalcite layers, extremely low total ion content and a surprisingly high variability of the isotope signature. Co-isotope evaluation (δD versus δ18O) of the core in comparison with data from precipitation and karst spring water clearly indicate that ice formation is governed by (slow) freezing of dripping water.


2003 ◽  
Vol 59 (1) ◽  
pp. 114-121 ◽  
Author(s):  
Martin J. Siegert ◽  
Richard C. A. Hindmarsh ◽  
Gordon S. Hamilton

AbstractInternal isochronous ice sheet layers, recorded by airborne ice-penetrating radar, were measured along an ice flowline across a large (>1 km high) subglacial hill in the foreground of the Transantarctic Mountains. The layers, dated through an existing stratigraphic link with the Vostok ice core, converge with the ice surface as ice flows over the hill without noticeable change to their separation with each other or the ice base. A two-dimensional ice flow model that calculates isochrons and particle flowpaths and accounts for ice flow over the hill under steady-state conditions requires net ablation (via sublimation) over the stoss face for the predicted isochrons to match the measured internal layers. Satellite remote sensing data show no sign of exposed ancient ice at this site, however. Given the lack of exposed glacial ice, surface balance conditions must have changed recently from the net ablation that is predicted at this site for the last 85,000 years to accumulation.


1992 ◽  
Vol 16 ◽  
pp. 21-24 ◽  
Author(s):  
Yao Tandong ◽  
L. G. Thompson

Α δ18O record from Dunde Ice Cap, located in the Qilian mountains on the northeastern margin of the Tibetan Plateau, has been analyzed and interpreted. With an ice temperature of –7.3°C at a depth of 10 m and –4.7°C at the bottom of the ice cap, and an accumulation rate of 400 mm a−1, the Dunde core has provided interesting results. The upper part of this core, core D-l, can be easily dated by a combination of δ18O, microparticle concentration and conductivity. It can also be dated as far back as 4550 BP by counting dust layers in ice. Based on the time scale established by the above methods and on the δ18O–temperature relation, the δ18O fluctuations in the upper 120 m of the core can be interpreted as mainly due to climatic changes during the past ~ 5000 years. The warmest periods in the past ~ 5000 years in the core were found to be centered on the present, 3000, and 4100 BP, and the colder periods center around 500, 1200, 4000, and 4500 BP. It is clear from the ice-core record that the Little Ice Age was only one of many cold periods in the past, although it was the coldest period in the past 500 years.


1988 ◽  
Vol 10 ◽  
pp. 206-207 ◽  
Author(s):  
J. Jouzel ◽  
C. Lorius ◽  
J.R. Petit ◽  
C. Genthon ◽  
N.I. Barkov ◽  
...  

Oceanic studies have convincingly demonstrated that there is a link between the Pleistocene ice ages and the variations in the elements of the Earth’s orbit (Imbrie and others 1984). In contrast, the climatic conditions which prevailed over continental areas have been far less well documented and then rarely on a quantitative basis. In this context, the 2083 m ice core recovered by the Soviet Antarctic Expeditions at Vostok (East Antarctica) is of fundamental importance because it covers fully the last glacial-interglacial cycle, back to the ice age which preceded the last interglacial (∽160 ka B.P.). Potentially it allows access to many climatic and climate-related parameters as illustrated by the oxygen-18 data we have recently published (Lorius and others 1985), from 10Be measurements (Yiou and others 1985, Raisbeck and others 1987), from aerosol concentration (De Angelis and others 1987) and from CO2 measurement (Barnola and others 1988, this volume). Our first isotopic data set was largely discontinuous over the last 100 ka (only about 7% of the core was analyzed), but continuous beyond that time. Sampling of the ice was completed later, in the field, and we now have continuous deuterium data for the whole core (total ice recovery is about 85%), combining the data of the 2083 m core below 138 m and a complementary data set above. The core chronology was established using a two-dimensional ice-flow model and, for snow accumulation, taking into account change with time (Lorius and others 1985). There is a general correspondence between this curve and the previously published δ18O record (Lorius and others 1985). However, there is obviously far more information in this continuous δD record, which we will examine from the deduced temperature record.


2008 ◽  
Vol 49 ◽  
pp. 71-76 ◽  
Author(s):  
Andrey N. Salamatin ◽  
Vladimir Ya. Lipenkov

AbstractA physical model for the snow/firn densification process (Salamatin and others, 2006) and Martinerie and others’ (1992, 1994) correlation for the firn density at the pore closure are employed to perform a scale analysis and computational experiments in order to deduce simplified relations for the close-off depth and ice age in quasi-stationary ice formation conditions. The critical snow density at which ice-grain rearrangement stops is used to take into account variability of snow structures subjected to densification. The results obtained are validated on a representative set of ice-core data from 22 sites which covers wide ranges of present-day temperatures and ice accumulation rates. A simple analytical approximation for the density–depth profile is proposed.


1988 ◽  
Vol 10 ◽  
pp. 206-207
Author(s):  
J. Jouzel ◽  
C. Lorius ◽  
J.R. Petit ◽  
C. Genthon ◽  
N.I. Barkov ◽  
...  

Oceanic studies have convincingly demonstrated that there is a link between the Pleistocene ice ages and the variations in the elements of the Earth’s orbit (Imbrie and others 1984). In contrast, the climatic conditions which prevailed over continental areas have been far less well documented and then rarely on a quantitative basis.In this context, the 2083 m ice core recovered by the Soviet Antarctic Expeditions at Vostok (East Antarctica) is of fundamental importance because it covers fully the last glacial-interglacial cycle, back to the ice age which preceded the last interglacial (∽160 ka B.P.). Potentially it allows access to many climatic and climate-related parameters as illustrated by the oxygen-18 data we have recently published (Lorius and others 1985), from 10Be measurements (Yiou and others 1985, Raisbeck and others 1987), from aerosol concentration (De Angelis and others 1987) and from CO2 measurement (Barnola and others 1988, this volume).Our first isotopic data set was largely discontinuous over the last 100 ka (only about 7% of the core was analyzed), but continuous beyond that time. Sampling of the ice was completed later, in the field, and we now have continuous deuterium data for the whole core (total ice recovery is about 85%), combining the data of the 2083 m core below 138 m and a complementary data set above. The core chronology was established using a two-dimensional ice-flow model and, for snow accumulation, taking into account change with time (Lorius and others 1985).There is a general correspondence between this curve and the previously published δ18O record (Lorius and others 1985). However, there is obviously far more information in this continuous δD record, which we will examine from the deduced temperature record.


2002 ◽  
Vol 35 ◽  
pp. 29-35 ◽  
Author(s):  
Kumiko Goto-Azuma ◽  
Roy M. Koerner ◽  
David A. Fisher

AbstractIn order to reconstruct climatic and environmental changes in the Canadian Arctic, an 85 m deep ice core drilled in 1995 on Penny Ice Cap, Baffin Island, was analyzed for ions and δ18O. In addition to the core, snow-pit samples collected in 1994 and 1995 were also analyzed. Elution of ions caused by summer melting was observed in the pits. Due to the heavy summer melting on this ice cap, seasonal variations of ion chemistry and δ18O were not always present in the core. Comparisons of this core with a previously reported core drilled 2.5 maway show that the noise contained in single annual time series is 40–50% for ions and 25% for δ18O. the ice-core data, however, provide us with a reasonable proxy record of climatic and environmental changes during the last two centuries on better than a decadal basis. Sulfate and nitrate concentrations started to increase around 1900 and 1960, respectively, due to anthropogenic influx transported from the industrialized regions in North America. Sea-salt concentrations began to increase around the mid-19th century and were elevated throughout the 20th century. This trend of sea-salt concentrations is similar to that of melt percentage, which is a measure of summer temperature. Warming after the Little Ice Age would have reduced the sea-ice extent and led to the elevated sea-salt concentrations on Penny Ice Cap.


1992 ◽  
Vol 16 ◽  
pp. 21-24 ◽  
Author(s):  
Yao Tandong ◽  
L. G. Thompson

Α δ18O record from Dunde Ice Cap, located in the Qilian mountains on the northeastern margin of the Tibetan Plateau, has been analyzed and interpreted. With an ice temperature of –7.3°C at a depth of 10 m and –4.7°C at the bottom of the ice cap, and an accumulation rate of 400 mm a−1, the Dunde core has provided interesting results. The upper part of this core, core D-l, can be easily dated by a combination of δ18O, microparticle concentration and conductivity. It can also be dated as far back as 4550 BP by counting dust layers in ice. Based on the time scale established by the above methods and on the δ18O–temperature relation, the δ18O fluctuations in the upper 120 m of the core can be interpreted as mainly due to climatic changes during the past ~ 5000 years. The warmest periods in the past ~ 5000 years in the core were found to be centered on the present, 3000, and 4100 BP, and the colder periods center around 500, 1200, 4000, and 4500 BP. It is clear from the ice-core record that the Little Ice Age was only one of many cold periods in the past, although it was the coldest period in the past 500 years.


2005 ◽  
Vol 64 (2) ◽  
pp. 272-278 ◽  
Author(s):  
Kam-biu Liu ◽  
Carl A. Reese ◽  
Lonnie G. Thompson

AbstractThis paper presents a high-resolution ice-core pollen record from the Sajama Ice Cap, Bolivia, that spans the last 400 yr. The pollen record corroborates the oxygen isotopic and ice accumulation records from the Quelccaya Ice Cap and supports the scenario that the Little Ice Age (LIA) consisted of two distinct phases�"a wet period from AD 1500 to 1700, and a dry period from AD 1700 to 1880. During the dry period xerophytic shrubs expanded to replace puna grasses on the Altiplano, as suggested by a dramatic drop in the Poaceae/Asteraceae (P/A) pollen ratio. The environment around Sajama was probably similar to the desert-like shrublands of the Southern Bolivian Highlands and western Andean slopes today. The striking similarity between the Sajama and Quelccaya proxy records suggests that climatic changes during the Little Ice Age occurred synchronously across the Altiplano.


Sign in / Sign up

Export Citation Format

Share Document