scholarly journals Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters

2015 ◽  
Vol 9 (6) ◽  
pp. 6275-6313 ◽  
Author(s):  
A. Touzeau ◽  
A. Landais ◽  
B. Stenni ◽  
R. Uemura ◽  
K. Fukui ◽  
...  

Abstract. The isotopic composition of oxygen and hydrogen in ice cores are invaluable tools for the reconstruction of past climate variations. Used alone, they give insights into the variations of the local temperature, whereas taken together they can provide information on the climatic conditions at the point of origin of the moisture. However, recent analyses of snow from shallow pits indicate that the climatic signal can become erased in very low accumulation regions, due to local processes of snow reworking. The signal to noise ratio decreases and the climatic signal can then only be retrieved using stacks of several snow pits. Obviously, the signal is not completely lost at this stage, otherwise it would be impossible to extract valuable climate information from ice cores as has been done, for instance, for the last glaciation. To better understand how the climatic signal is passed from the precipitation to the snow, we present here results from varied snow samples from East Antarctica. First, we look at the relationship between isotopes and temperature from a geographical point of view, using results from three traverses across Antarctica, to see how the relationship is built up through the distillation process. We also take advantage of these measures to see how second order parameters (d-excess and 17O-excess) are related to δ18O and how they are controlled. d-excess increases in the interior of the continent (i.e. when δ18O decreases), due to the distillation process, whereas 17O-excess decreases in remote areas, due to kinetic fractionation at low temperature. In both cases, these changes are associated with the loss of original information regarding the source. Then, we look at the same relationships in precipitation samples collected over one year at Dome C and Vostok, as well as in surface snow at Dome C. We note that the slope of the δ18O / T relationship decreases in these samples compared to those from the traverses, and thus advocate caution when using spatial slopes for past climate reconstruction. The second-order parameters behave in the same way in the precipitation as in the surface snow from traverses, indicating that similar processes are active. Finally we check if the same relationships between δ18O and second-order parameters are also found in the snow from four snow pits. While the d-excess remains opposed to δ18O in most snow pits, the 17O-excess is no longer positively correlated to δ18O and even shows anti-correlation to δ18O at Vostok. This may be due to a stratospheric influence at this site and/or to post-deposition processes.

2016 ◽  
Vol 10 (2) ◽  
pp. 837-852 ◽  
Author(s):  
Alexandra Touzeau ◽  
Amaëlle Landais ◽  
Barbara Stenni ◽  
Ryu Uemura ◽  
Kotaro Fukui ◽  
...  

Abstract. The isotopic compositions of oxygen and hydrogen in ice cores are invaluable tools for the reconstruction of past climate variations. Used alone, they give insights into the variations of the local temperature, whereas taken together they can provide information on the climatic conditions at the point of origin of the moisture. However, recent analyses of snow from shallow pits indicate that the climatic signal can become erased in very low accumulation regions, due to local processes of snow reworking. The signal-to-noise ratio decreases and the climatic signal can then only be retrieved using stacks of several snow pits. Obviously, the signal is not completely lost at this stage, otherwise it would be impossible to extract valuable climate information from ice cores as has been done, for instance, for the last glaciation. To better understand how the climatic signal is passed from the precipitation to the snow, we present here results from varied snow samples from East Antarctica. First, we look at the relationship between isotopes and temperature from a geographical point of view, using results from three traverses across Antarctica, to see how the relationship is built up through the distillation process. We also take advantage of these measures to see how second-order parameters (d-excess and 17O-excess) are related to δ18O and how they are controlled. d-excess increases in the interior of the continent (i.e., when δ18O decreases), due to the distillation process, whereas 17O-excess decreases in remote areas, due to kinetic fractionation at low temperature. In both cases, these changes are associated with the loss of original information regarding the source. Then, we look at the same relationships in precipitation samples collected over 1 year at Dome C and Vostok, as well as in surface snow at Dome C. We note that the slope of the δ18O vs. temperature (T) relationship decreases in these samples compared to those from the traverses, and thus caution is advocated when using spatial slopes for past climate reconstruction. The second-order parameters behave in the same way in the precipitation as in the surface snow from traverses, indicating that similar processes are active and that their interpretation in terms of source climatic parameters is strongly complicated by local temperature effects in East Antarctica. Finally we check if the same relationships between δ18O and second-order parameters are also found in the snow from four snow pits. While the d-excess remains opposed to δ18O in most snow pits, the 17O-excess is no longer positively correlated to δ18O and even shows anti-correlation to δ18O at Vostok. This may be due to a stratospheric influence at this site and/or to post-deposition processes.


2020 ◽  
Author(s):  
Mathieu Casado ◽  
Amaelle Landais ◽  
Ghislain Picard ◽  
Laurent Arnaud ◽  
Giuliano Dreossi ◽  
...  

<p>Water isotopic composition is a key proxy for past climate reconstructions using deep ice cores from Antarctica. As precipitation forms, the local temperature is imprinted in the snowfalls δ<sup>18</sup>O. However, this climatic signal can be erased after snow deposition when snow is exposed to the atmosphere for a long time in regions with extremely low accumulation. Understanding this effect is crucial for the interpretation of ice core records from the extremely dry East Antarctic Plateau, where post-deposition processes such as blowing snow or metamorphism affect the physical and chemical properties of snow during the long periods of snow exposure to the atmosphere. Despite the importance of these processes for the reliable reconstruction of temperature from water isotopic composition in ice cores, the tools required to quantify their impacts are still missing. Here, we present a first year-long comparison between (a) time series of surface snow isotopic composition including d-excess and <sup>17</sup>O-excess at Dome C and (b) satellite observations providing information on snow grain size, a marker of surface metamorphism. Long summer periods without precipitation tend to produce a surface snow metamorphism signature erasing the climatic signal in the surface snow δ<sup>18</sup>O. Using a simple model, we demonstrate that d-excess and <sup>17</sup>O-excess allow the identification of the latent fluxes induced by metamorphism, and their impact on surface snow isotopic composition. In turn, their measurements can help improve climate reconstructions based on δ<sup>18</sup>O records ice by removing the influence of snow metamorphism.</p>


2018 ◽  
Vol 12 (4) ◽  
pp. 1177-1194 ◽  
Author(s):  
Guitao Shi ◽  
Meredith G. Hastings ◽  
Jinhai Yu ◽  
Tianming Ma ◽  
Zhengyi Hu ◽  
...  

Abstract. Antarctic ice core nitrate (NO3-) can provide a unique record of the atmospheric reactive nitrogen cycle. However, the factors influencing the deposition and preservation of NO3- at the ice sheet surface must first be understood. Therefore, an intensive program of snow and atmospheric sampling was made on a traverse from the coast to the ice sheet summit, Dome A, East Antarctica. Snow samples in this observation include 120 surface snow samples (top ∼ 3 cm), 20 snow pits with depths of 150 to 300 cm, and 6 crystal ice samples (the topmost needle-like layer on Dome A plateau). The main purpose of this investigation is to characterize the distribution pattern and preservation of NO3- concentrations in the snow in different environments. Results show that an increasing trend of NO3- concentrations with distance inland is present in surface snow, and NO3- is extremely enriched in the topmost crystal ice (with a maximum of 16.1 µeq L−1). NO3- concentration profiles for snow pits vary between coastal and inland sites. On the coast, the deposited NO3- was largely preserved, and the archived NO3- fluxes are dominated by snow accumulation. The relationship between the archived NO3- and snow accumulation rate can be depicted well by a linear model, suggesting a homogeneity of atmospheric NO3- levels. It is estimated that dry deposition contributes 27–44 % of the archived NO3- fluxes, and the dry deposition velocity and scavenging ratio for NO3- were relatively constant near the coast. Compared to the coast, the inland snow shows a relatively weak correlation between archived NO3- and snow accumulation, and the archived NO3- fluxes were more dependent on concentration. The relationship between NO3- and coexisting ions (nssSO42-, Na+ and Cl−) was also investigated, and the results show a correlation between nssSO42- (fine aerosol particles) and NO3- in surface snow, while the correlation between NO3- and Na+ (mainly associated with coarse aerosol particles) is not significant. In inland snow, there were no significant relationships found between NO3- and the coexisting ions, suggesting a dominant role of NO3- recycling in determining the concentrations.


2020 ◽  
Author(s):  
Maria Hörhold ◽  
Alexander Weinhart ◽  
Sepp Kipfstuhl ◽  
Johannes Freitag ◽  
Georgia Micha ◽  
...  

<p>The reconstruction of past temperatures based on ice core records relies on the quantitative but empirical relationship of stable water isotopes and annual mean temperature. However, its relation varies through space and time. On the East Antarctic Plateau, temperature reconstructions from ice cores are poorly constrained or even fail on decadal and smaller time scales. The observed discrepancy between annual mean temperature and isotopic composition partly relies on surface processes altering the signal after deposition but also, to a great deal, on spatially coherent processes prior to or during deposition. However, spatial coverage over larger areas on the East Antarctic Plateau is challenging. We here present in-situ measurements of the isotopic composition of surface snow with unprecedented statistical quality and coverage. 1m surface snow profiles were collected during an overland traverse between Kohnen station and Plateau Station, covering a 1200km long transect. We explore regional differences of the temperature-isotope relationship and discuss possible mechanisms affecting the isotopic composition in areas with accumulation rates lower than 60mmWEa^-1.</p>


2017 ◽  
Author(s):  
Mathieu Casado ◽  
Amaelle Landais ◽  
Ghislain Picard ◽  
Thomas Münch ◽  
Thomas Laepple ◽  
...  

Abstract. The oldest ice core records are obtained from the East Antarctic plateau. Water isotopes records are key to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all the processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in Rayleigh distillation and isotope enabled climate models. However, a quantitative understanding of processes potentially altering the snow isotopic composition after the deposition is still missing. In low accumulation sites, such as those found in Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretation of isotopic composition. Here, we combine observations of isotopic composition in the vapour, the precipitation, the surface snow and the buried snow from Dome C, a deep ice core site on the East Antarctic Plateau. At the seasonal scale, we suggest a significant impact of metamorphism on surface snow isotopic signal compared to the initial precipitation signal. Particularly, in summer, exchanges of water molecules between vapour and snow are driven by the sublimation/condensation cycles at the diurnal scale. Using highly resolved isotopic composition profiles from pits in five Antarctic sites, we identify common patterns, despite different accumulation rates, which cannot be attributed to the seasonal variability of precipitation. Altogether, the difference in the signals observed in the precipitation, surface snow and buried snow isotopic composition constitute evidences of post-deposition processes affecting ice core records in low accumulation areas.


2016 ◽  
Vol 10 (4) ◽  
pp. 1647-1663 ◽  
Author(s):  
François Ritter ◽  
Hans Christian Steen-Larsen ◽  
Martin Werner ◽  
Valérie Masson-Delmotte ◽  
Anais Orsi ◽  
...  

Abstract. Quantifying the magnitude of post-depositional processes affecting the isotopic composition of surface snow is essential for a more accurate interpretation of ice core data. To achieve this, high temporal resolution measurements of both lower atmospheric water vapor and surface snow isotopic composition are required. This study presents continuous measurements of water vapor isotopes performed in East Antarctica (Kohnen station) from December 2013 to January 2014 using a laser spectrometer. Observations have been compared with the outputs of two atmospheric general circulation models (AGCMs) equipped with water vapor isotopes: ECHAM5-wiso and LMDZ5Aiso. During our monitoring period, the signals in the 2 m air temperature T, humidity mixing ratio q and both water vapor isotopes δD and δ18O are dominated by the presence of diurnal cycles. Both AGCMs simulate similar diurnal cycles with a mean amplitude 30 to 70 % lower than observed, possibly due to an incorrect simulation of the surface energy balance and the boundary layer dynamics. In parallel, snow surface samples were collected each hour over 35 h, with a sampling depth of 2–5 mm. A diurnal cycle in the isotopic composition of the snow surface is observed in phase with the water vapor, reaching a peak-to-peak amplitude of 3 ‰ for δD over 24 h (compared to 36 ‰ for δD in the water vapor). A simple box model treated as a closed system has been developed to study the exchange of water molecules between an air and a snow reservoir. In the vapor, the box model simulations show too much isotopic depletion compared to the observations. Mixing with other sources (advection, free troposphere) has to be included in order to fit the observations. At the snow surface, the simulated isotopic values are close to the observations with a snow reservoir of  ∼ 5 mm depth (range of the snow sample depth). Our analysis suggests that fractionation occurs during sublimation and that vapor–snow exchanges can no longer be considered insignificant for the isotopic composition of near-surface snow in polar regions.


2021 ◽  
Author(s):  
Mathieu Casado ◽  
Christophe Leroy-Dos Santos ◽  
Elise Fourré ◽  
Vincent Favier ◽  
Cécile Agosta ◽  
...  

<p>Stable water isotopes are effective hydrological tracers due to fractionation processes throughout the water cycle, and thus, the stable isotopes from ice cores can serve as valuable proxies for past changes in the climate and local environment of polar regions. Proper interpretation of these isotopes requires to understand the influence of each potential fractionating process, such as initial evaporation over the ocean and precipitation events, but also the effects of post-depositional exchange between snow and moisture in the atmosphere. Thanks to new developments in infrared spectroscopy, it is now possible to continuously monitor the isotopic composition of atmospheric water vapor in coordination with discrete snow sampling. This allows us to readily document the isotopic and mass exchanges between snow and vapor as well as the stability of the atmospheric boundary layer, as has recently been shown on the East Antarctic Plateau at Kohnen (Ritter et al., TC, 2016) and Dome C (Casado et al., ACP, 2016) stations where substantial diurnal isotopic variations have been recorded.</p><p>In this study, we present the first vapor monitoring of an East Antarctic transect that covered more than 3600 km over a period of 3 months from November 2019 to February 2020 as part of the EAIIST mission. The isotopic record therefore describes the evolution from typical coastal values to highly depleted values deep inside the continent on the high-altitude plateau. In parallel, we also monitored the vapor isotopic composition at two stations: the coastal starting point of Dumont D’Urville (DDU) and the plateau halfway point of Dome C. Two automatic weather stations (at Paleo and Megadunes sites) were also installed in a previously unexplored region of the East Antarctic plateau that was covered by this transect. This suite of cross-calibrated vapor isotope observations and weather stations, coupled with Modele Atmospherique Régional (MAR) climate modeling, offers a unique opportunity to compare the spatial and temporal gradients of humidity, temperature, and water vapor isotopic composition in East Antarctica during the summer season, and to estimate how the water vapour isotope measurements at Dome C and DDU are representative of the conditions in East Antarctica. The quantitative agreement between the EAIIST record and those recorded at DDU and Dome C stations at the times the raid was nearby, gives confidence in the quality of the results acquired on this traverse. Although further comparisons with the surface snow isotopic composition are required to quantify the impact of the snow-atmosphere exchanges on the local surface mass balance, these initial results of vapor isotopic composition show the potential of using water stables isotopes to evaluate hydrological processes in East Antarctica and better reconstruct past climate changes through ice cores.</p>


2016 ◽  
Author(s):  
Mathieu Casado ◽  
Amaelle Landais ◽  
Valérie Masson-Delmotte ◽  
Christophe Genthon ◽  
Erik Kerstel ◽  
...  

Abstract. Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of surface snow, precipitation and water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for one month in December–January 2014–2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying a unique origin leading to this isotopic composition.


2021 ◽  
Author(s):  
Romilly Harris Stuart ◽  
Anne-Katrine Faber ◽  
Sonja Wahl ◽  
Maria Hörhold ◽  
Sepp Kipfstuhl ◽  
...  

Abstract. Stable water isotopes from polar ice cores are invaluable high-resolution climate proxy records. Recent studies have aimed to improve knowledge of how the climate signal is stored in the water isotope record by addressing the influence of post-depositional processes on the surface snow isotopic composition. In this study, the relationship between changes in surface snow microstructure after precipitation/deposition events and water isotopes is explored using measurements of snow specific surface area (SSA). Continuous daily SSA measurements from the East Greenland Ice Core Project site (EastGRIP) situated in the accumulation zone of the Greenland Ice Sheet during the summer seasons of 2017, 2018 and 2019 are used to develop an empirical decay model to describe events of rapid decrease in SSA, driven predominantly by vapour diffusion in the pore space and atmospheric vapour exchange. The SSA decay model is described by the exponential equation SSA(t) = (SSA0 −26.8) e−0.54t + 26.8. The model performance is optimal for daily mean values of surface temperature in the range 0 °C to −25 °C and wind speed < 6 m s−1. The findings from the SSA analysis are used to explore the influence of surface snow metamorphism on altering the isotopic composition of surface snow. It is found that rapid SSA decay events correspond to decreases in d-excess over a 2-day period in 72 % of the samples. Detailed studies using Empirical Orthogonal Function (EOF) analysis revealed a coherence between the dominant mode of variance of SSA and d-excess during periods of low spatial variability of surface snow over the sampling transect, suggesting that processes driving change in SSA also influence d-excess. Our findings highlight the need for future studies to decouple the processes driving surface snow metamorphism in order to quantify the fractionation effect of individual processes on the snow isotopic composition.


2016 ◽  
Vol 43 (11) ◽  
pp. 5878-5885 ◽  
Author(s):  
Ryu Uemura ◽  
Kosuke Masaka ◽  
Kotaro Fukui ◽  
Yoshinori Iizuka ◽  
Motohiro Hirabayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document