scholarly journals On A Matrix Hypergeometric Differential Equation

2021 ◽  
Vol 20 (1) ◽  
pp. 182-185
Author(s):  
Salah Hamd ◽  
Faisal Saleh Abdalla ◽  
Ahmed Shletiet

In this paper we consider a matrix Hypergeometric differential equation, which are special matrix functions and solution of a specific second order linear differential equation. The aim of this work is to extend a well known theorem on Hypergeometric  function in the complex plane to a matrix version, and we  show that  the asymptotic expansions of  Hypergeometric  function in the complex plane ” that are given in the literature are special members of our main result. Background and motivation are discussed.

Author(s):  
R. B. Paris

SynopsisThe asymptotic expansions of solutions of a class of linear ordinary differential equations of arbitrary order n are investigated for large values of the independent variable z in the complex plane. Solutions are expressed in terms of Mellin-Barnes integrals and their asymptotic expansions are subsequently determined by means of the asymptotic theory of integral functions of the hypergeometric type. Three classes of solutions are considered: (i) solutions whose behaviour is either exponentially large or algebraic for |z|→∞ in different sectors of the z-plane, (ii) solutions which are even and odd functions of z when the order n of the differential equation is even and (iii) solutions which are exponentially damped as |z|→∞ in a certain sector of the z-plane.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Shahid Mubeen ◽  
Mammona Naz ◽  
Abdur Rehman ◽  
Gauhar Rahman

We solve the second-order linear differential equation called thek-hypergeometric differential equation by using Frobenius method around all its regular singularities. At each singularity, we find 8 solutions corresponding to the different cases for parameters and modified our solutions accordingly.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Kordan N. Ospanov

AbstractWe give some sufficient conditions for the existence and uniqueness of the solution of a higher-order linear differential equation with unbounded coefficients in the Hilbert space. We obtain some estimates for the weighted norms of the solution and its derivatives. Using these estimates, we show the conditions for the compactness of some integral operators associated with the resolvent.


1986 ◽  
Vol 102 (3-4) ◽  
pp. 253-257 ◽  
Author(s):  
B. J. Harris

SynopsisIn an earlier paper [6] we showed that if q ϵ CN[0, ε) for some ε > 0, then the Titchmarsh–Weyl m(λ) function associated with the second order linear differential equationhas the asymptotic expansionas |A| →∞ in a sector of the form 0 < δ < arg λ < π – δ.We show that if the real valued function q admits the expansionin a neighbourhood of 0, then


2020 ◽  
Vol 99 (3) ◽  
pp. 18-25
Author(s):  
Karwan H.F. Jwamer ◽  
◽  
Rando R.Q. Rasul ◽  

In this paper, we study a fourth order linear differential equation. We found an upper bound for the solutions of this differential equation and also, we prove that all the solutions are in L4(0, ∞). By comparing these results we obtain that all the eigenfunction of the boundary value problem generated by this differential equation are bounded and in L4(0, ∞).


Sign in / Sign up

Export Citation Format

Share Document